Training and Resources
Seminars
Super Resolution Workshop With Zeiss (10/2022)
Whole Slide Image Analyses Using Halo Webinar (12/2022)
Overview and step-by-step workflow for HALO image analysis modules available in the AMCF
Universal Microscopy Resources
Spectral Databases
Image Analysis/Viewing Software
- IMARIS (core facility package available in data analysis workroom)
- IMARIS Viewer (available for anyone to download)
- HALO (selected modules available in data analysis workroom)
- NIH Image J (in data analysis workroom and available for anyone to download)
- FIJI (in data analysis workroom and available for anyone to download)
- QuPath (in data analysis workroom and available for anyone to download)
- ZEN Lite (in data analysis workroom and available for anyone to download)
Data Management Planning
- Full Data Management & Sharing Plan
- Summary of Data types and Access options
Image Collection Learning Modules
Image Analysis Learning Modules
IMARIS homeschool, a diverse array of training videos/tutorials for 3D image analyses.
IMARIS offers several research focused applications (visualization and quantification), including educational resources for studies focused on the following:
Examples of available (free) IMARIS learning modules
- Review the IMARIS User Manual
HALO’s online learning portal (free access with UNMC email registration), user guides, technical documents, video tutorials, and webinars.
Learn more about 2D image analysis HALO modules available in the core facility
- Spatial Analysis
- FISH-IF
- Highplex Fluorescence
- Serial Registration Analysis
- Tissue Classifier
Watch our Educational Webinar (12/2022) on whole slide image analyses using HALO
Overview and step-by-step workflow for HALO image analysis modules available in the AMCF
Whole-Slide Image Analysis and Quantitative Pathology with QuPath (available in the core)
Bioimage Analysis Course: The Life Cycle of an Image Data Set
This course is designed as a graduate student level introduction to bioimage analysis and will provide an overview of the practice and principles of microscopy digital image handling. This series follows the life cycle of an image data set, from acquisition to analysis. It teaches important concepts and best practices and provides examples that will come in handy when scientists are designing their own experiments.
Tutorial: guidance for quantitative confocal microscopy (Nature Protocols)
In this tutorial, the researcher is guided through all aspects of acquiring quantitative confocal microscopy images, including optimizing sample preparation for fixed and live cells, choosing the most suitable microscope for a given application and configuring the microscope parameters. Suggestions are offered for planning unbiased and rigorous confocal microscope experiments.
Educational Modules for some Image Repositories and Data Management (Global BioImaging)
Image Repositories & Data Management modules are dedicated to image data management, sharing, reuse, and image data repositories including OMERO.
General Microscopy Courses
ANDOR/Oxford Complete Microscopy Training Course
This free course introduces concepts in detectors, fluorescence microscopy, sample preparation and confocal microscopy. Once the fundamental keystones of the course are laid, we introduce advanced microscopy applications such as TIRF, super-resolution and photostimulation techniques. Finally, we present an introduction to post-processing and image analysis tools.
iBiology Fluorescence Microscopy Course
This free online comprehensive series begins with the basics of optics, proceeds through transmitted light microscopy, covers the various methods of imaging fluorescent samples, describes how cameras work and image processing, and concludes with some of the latest advances in light microscopy. In addition to lectures, we also provide labs (filmed at a microscope) and short tips, so as to cover pragmatics of how to use microscopes.
MicroCourses from the Harvard Medical School Nikon Imaging Center
Microcourses are short educational videos on a variety of light microscopy topics, brought to you by a team of microscopists from Harvard Medical School.
Introduction to Fluorescence Light Microscopy (UNC, Pablo Ariel)
Lecture offering an introduction to terminology including contrast, resolution, widefield, and the importance of biological scales when conducting biomedical imaging studies.
Introduction to Confocal microscopy (UNC, Pablo Ariel)
Lecture introducing foundational concepts for planning and conducting biomedical research using confocal microscopy.
MYSCOPE interactive training modules for microscopy education
MyScope was developed by Microscopy Australia to provide an online learning environment for those who want to learn about microscopy. The platform provides insights into the fundamental science behind different microscopes, explores what can and cannot be measured by different systems and provides a realistic operating experience on high end microscopes.
Tutorial: guidance for quantitative confocal microscopy (Nature Protocols)
In this tutorial, the researcher is guided through all aspects of acquiring quantitative confocal microscopy images, including optimizing sample preparation for fixed and live cells, choosing the most suitable microscope for a given application and configuring the microscope parameters. Suggestions are offered for planning unbiased and rigorous confocal microscope experiments.
Educational Modules for some Image Repositories and Data Management (Global BioImaging)
Image Repositories & Data Management modules are dedicated to image data management, sharing, reuse, and image data repositories including OMERO.
Instrument-Specific Resources
Zeiss800 LSM with Airyscan for high resolution imaging
- Airyscan Acquisition and Processing step-by-step (Video, settings review)
Zeiss 710 Conocal Laser Scanning Microscope
- Overview of key functions, imaging configurations for Zeiss 710 (AU BioImaging, start at 20 min)
Zeiss Cell Discoverer 7
- Overview of system features (video).
Miltenyi Biotec Ultramicroscope II Light Sheet Fluorescence Microscope
- Overview and Applications for Light-Sheet Microscopy (UNC, Pablo Ariel) Overview of LSFM, tissue clearing, and imaging on the UltraMicroscope II system.
- UltraMicroscope II Users Guide (UNC, Pablo Ariel) Provides critical information regarding sample preparation, imaging parameters and expectations.
- Reference protocols for tissue clearing/processing using the X-Clarity System
- General (multi-organ, includes Antibody reference list); X-CLARITY Full Protocol, X-CLARITY_General Protocol
- Bone-specific; Greenbaum et al 2017, X-CLARITY_BONE_Harvard
- Brain-specific; X-CLARITY_BRAIN_Harvard
- Watch on-demand Miltenyi Biotec training courses to learn more about sample preparation, imaging logistics, and to view some representative studies.
- Samples must be secured (spiked holder, or super glued) sample base for imaging. Small samples (i.e. zebrafish) should be embedded in 0.5 - 2% low temperature melting agarose (Sigma Aldrich A9414) prior to mounting/imaging. Consult with AMCF prior to scheduling your imaging session.
- Researchers should minimize sample sizes to facilitate successful tissue clearing and efficiently manage resultant volumetric image file sizes (10’s to 100’s of GBs).
- Imspector software on the ultramicroscope performs limited visualization, see AMCF’s working with images post LSFM imaging document.
- LSFM is relatively low-resolution imaging in large volumes, higher resolution (≥ 0.25 um x,y, ≥ 0.5 um z) can be obtained in the UNMC Multiphoton Intravital & Tissue Imaging Core.
- Learn more about Logos Biosystems DeepLabel antibody staining kits for LSFM imaging. Depending on demand, AMCF will purchase supplies in bulk to offer discounted pricing to individual research groups.
Zeiss Elyra PS.1 Super Resolution Microscope
Sample Preparation and Imaging
- SR imaging requires specialized sample preparation. Read, ElyraSamplePrepGuide and review educational webinar with Zeiss, below.
- Watch our recent Super Resolution Workshop with Zeiss (10/2022)
- Single-Molecule Localization Microscopy: Theoretical Basis and Practical Guide
- Reference articles, superresolution sample preparations and reviews
Antibodies and Reagents for Superresolution Imaging
- Super-resolution imaging using SIM and TIRF use standard, photobleaching-resistant fluorescent proteins and dyes.
- Super-resolution imaging using PALM/STORM requires fluorescent proteins and dyes capable of transitioning between ‘on’ and ‘off’ states. On/Off is achieved through specific activator-reporter dye/protein pairs or when fluorophores are converted using specialized oxygen-scavenging buffers. A limited number of fluorophores may blink without specialized buffers (Alexa 647).
- In addition to selecting appropriate fluorescent proteins and dyes, appropriate coverslips, imaging buffers, and/or mounting media must be used for successful super resolution imaging. Carefully read SIM, PALM/STORM preparation document (ElyraSamplePrepGuide).
- Chromotek Nanobodies (novel primary and secondary antibodies for higher resolution & cleaner images) for super-resolution imaging
- STORMreagents (a broad list of proteins, dyes, buffers, and associated references for PALM/STORM imaging from Nikon)
- ThermoFisher STORM products (list available antibody conjugates, nuclei acid stains, organelle probes, buffers and reagents for STORM imaging)
- ThermoFisher SIM products (list of available antibody conjugates, organelle, and DNA stains)
Recent Core Publications
AMCF users are obligated to fully acknowledge the facility and its funding sources in formal publications and presentations containing any data generated in the facility. Appropriately citing the AMCF helps us maintain internal and external funding allowing us to minimize hourly core usage fees.
2022
Bhatia R, Siddiqui JA, Ganguly K, Thompson CM, Cannon A, Aithal A, Perumal N, Maurya SK, Li X, Cox JL, Gurumurthy CB, Rachagani S, Jain M, Nasser MW, Batra SK, Kumar S. Muc4 loss mitigates epidermal growth factor receptor activity essential for PDAC tumorigenesis. Oncogene. 2023 Jan 9. doi: 10.1038/s41388-022-02587-1. Epub ahead of print. PMID: 36624189.
Bhatia R, Thompson CM, Clement EJ, Ganguly K, Cox JL, Rauth S, Siddiqui JA, Mashiana SS, Jain M, Wyatt TA, Mashiana HS, Singh S, Woods NT, Kharbanda KK, Batra SK, Kumar S. Malondialdehyde-Acetaldehyde Extracellular Matrix Protein Adducts Attenuate Unfolded Protein Response During Alcohol and Smoking-Induced Pancreatitis. Gastroenterology. 2022 Oct;163(4):1064-1078.e10. doi: 10.1053/j.gastro.2022.06.071. Epub 2022 Jul 3. PMID: 35788346; PMCID: PMC9796922.
Dutta S, Polavaram NS, Islam R, Bhattacharya S, Bodas S, Mayr T, Roy S, Albala SAY, Toma MI, Darehshouri A, Borkowetz A, Conrad S, Fuessel S, Wirth M, Baretton GB, Hofbauer LC, Ghosh P, Pienta KJ, Klinkebiel DL, Batra SK, Muders MH, Datta K. Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene. 2022 Jul;41(30):3747-3760. doi: 10.1038/s41388-022-02382-y. Epub 2022 Jun 27. PMID: 35754042.
Ganguly K, Bhatia R, Rauth S, Kisling A, Atri P, Thompson C, Vengoji R, Ram Krishn S, Shinde D, Thomas V, Kaur S, Mallya K, Cox JL, Kumar S, Batra SK. Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance. Gastroenterology. 2022 Jan;162(1):253-268.e13. doi: 10.1053/j.gastro.2021.09.017. Epub 2021 Sep 14. PMID: 34534538; PMCID: PMC8678212.
Gautam SK, Dalal V, Sajja BR, Gupta S, Gulati M, Dwivedi NV, Aithal A, Cox JL, Rachagani S, Liu Y, Chung V, Salgia R, Batra SK, Jain M. Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Lett. 2022 Sep 28;544:215801. doi: 10.1016/j.canlet.2022.215801. Epub 2022 Jun 19. PMID: 35732216.
Islam R, Mishra J, Polavaram NS, Bhattacharya S, Hong Z, Bodas S, Sharma S, Bouska A, Gilbreath T, Said AM, Smith LM, Teply BA, Muders MH, Batra SK, Datta K, Dutta S. Neuropilin-2 axis in regulating secretory phenotype of neuroendocrine-like prostate cancer cells and its implication in therapy resistance. Cell Rep. 2022 Jul 19;40(3):111097. doi: 10.1016/j.celrep.2022.111097. PMID: 35858551; PMCID: PMC9362995.
Lakshmanan I, Marimuthu S, Chaudhary S, Seshacharyulu P, Rachagani S, Muniyan S, Chirravuri-Venkata R, Atri P, Rauth S, Nimmakayala RK, Siddiqui JA, Gautam SK, Shah A, Natarajan G, Parte S, Bhyravbhatla N, Mallya K, Haridas D, Talmon GA, Smith LM, Kumar S, Ganti AK, Jain M, Ponnusamy MP, Batra SK. Muc16 depletion diminishes KRAS-induced tumorigenesis and metastasis by altering tumor microenvironment factors in pancreatic ductal adenocarcinoma. Oncogene. 2022 Nov;41(48):5147-5159. doi: 10.1038/s41388-022-02493-6. Epub 2022 Oct 21. PMID: 36271032.
Leon F, Seshacharyulu P, Nimmakayala RK, Chugh S, Karmakar S, Nallasamy P, Vengoji R, Rachagani S, Cox JL, Mallya K, Batra SK, Ponnusamy MP. Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene. 2022 Jan;41(1):57-71. doi: 10.1038/s41388-021-02047-2. Epub 2021 Oct 21. PMID: 34675409; PMCID: PMC8727507.
Machhi J, Yeapuri P, Markovic M, Patel M, Yan W, Lu Y, Cohen JD, Hasan M, Abdelmoaty MM, Zhou Y, Xiong H, Wang X, Mosley RL, Gendelman HE, Kevadiya BD. Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chem Neurosci. 2022 Apr 20;13(8):1232-1244. doi: 10.1021/acschemneuro.1c00847. Epub 2022 Mar 21. PMID: 35312284; PMCID: PMC9227977.
Marimuthu S, Lakshmanan I, Muniyan S, Gautam SK, Nimmakayala RK, Rauth S, Atri P, Shah A, Bhyravbhatla N, Mallya K, Grandgenett PM, Hollingsworth MA, Datta K, Jain M, Ponnusamy MP, Batra SK. MUC16 Promotes Liver Metastasis of Pancreatic Ductal Adenocarcinoma by Upregulating NRP2-Associated Cell Adhesion. Mol Cancer Res. 2022 Aug 5;20(8):1208-1221. doi: 10.1158/1541-7786.MCR-21-0888. PMID: 35533267; PMCID: PMC9635595.
Mir S, Golden BDO, Griess BJ, Vengoji R, Tom E, Kosmacek EA, Oberley-Deegan RE, Talmon GA, Band V, Teoh-Fitzgerald ML. Upregulation of Nox4 induces a pro-survival Nrf2 response in cancer-associated fibroblasts that promotes tumorigenesis and metastasis, in part via Birc5 induction. Breast Cancer Res. 2022 Jul 14;24(1):48. doi: 10.1186/s13058-022-01548-6. PMID: 35836253; PMCID: PMC9281082.
Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK, Siddiqui JA. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol. 2022 Nov;86(Pt 3):497-512. doi: 10.1016/j.semcancer.2022.02.017. Epub 2022 Feb 16. PMID: 35181473; PMCID: PMC9793433.
Nimmakayala RK, Ogunleye AO, Parte S, Krishna Kumar N, Raut P, Varadharaj V, Perumal NK, Nallasamy P, Rauth S, Cox JL, Lele SM, Batra SK, Ponnusamy MP. PAF1 cooperates with YAP1 in metaplastic ducts to promote pancreatic cancer. Cell Death Dis. 2022 Oct 1;13(10):839. doi: 10.1038/s41419-022-05258-x. PMID: 36180487; PMCID: PMC9525575.
Peng ZH, Jogdeo CM, Li J, Xie Y, Wang Y, Sheinin YM, Kopeček J, Oupický D. Tumor Microenvironment-Responsive Polymeric iRGD and Doxorubicin Conjugates Reduce Spontaneous Lung Metastasis in an Orthotopic Breast Cancer Model. Pharmaceutics. 2022 Aug 18;14(8):1725. doi: 10.3390/pharmaceutics14081725. PMID: 36015351; PMCID: PMC9416753.
Phillips AJ, Lobl MB, Hafeji YA, Safranek HR, Mohr AM, Mott JL. Glycosylation of FGFR4 in cholangiocarcinoma regulates receptor processing and cancer signaling. J Cell Biochem. 2022 Mar;123(3):568-580. doi: 10.1002/jcb.30204. Epub 2022 Jan 4. PMID: 34981854; PMCID: PMC8940645.
Pothuraju R, Pai P, Chaudhary S, Siddiqui JA, Cox JL, Kaur S, Rachagani S, Roy HK, Bouvet M, Batra SK. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging (Albany NY). 2022 Mar 7;14(5):2025-2046. doi: 10.18632/aging.203935. Epub 2022 Mar 7. PMID: 35255004; PMCID: PMC8954958.
Seshacharyulu P, Halder S, Nimmakayala R, Rachagani S, Chaudhary S, Atri P, Chirravuri-Venkata R, Ouellette MM, Carmicheal J, Gautam SK, Vengoji R, Wang S, Li S, Smith L, Talmon GA, Klute K, Ly Q, Reames BN, Grem JL, Berim L, Padussis JC, Kaur S, Kumar S, Ponnusamy MP, Jain M, Lin C, Batra SK. Disruption of FDPS/Rac1 axis radiosensitizes pancreatic ductal adenocarcinoma by attenuating DNA damage response and immunosuppressive signalling. EBioMedicine. 2022 Jan;75:103772. doi: 10.1016/j.ebiom.2021.103772. Epub 2021 Dec 28. PMID: 34971971; PMCID: PMC8718746.
Zeng Y, Yin L, Zhou J, Zeng R, Xiao Y, Black AR, Hu T, Singh PK, Yin F, Batra SK, Yu F, Chen Y, Dong J. MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene. 2022 Jul;41(31):3859-3875. doi: 10.1038/s41388-022-02399-3. Epub 2022 Jul 2. PMID: 35780183; PMCID: PMC9339507.
Zhang C, Atri P, Nallasamy P, Parte S, Rauth S, Nimmakayala RK, Marimuthu S, Chirravuri-Venkata R, Bhatia R, Halder S, Shah A, Cox JL, Smith L, Kumar S, Foster JM, Kukreja RC, Seshacharyulu P, Ponnusamy MP, Batra SK. Small molecule inhibitor against onco-mucins disrupts Src/FosL1 axis to enhance gemcitabine efficacy in pancreatic ductal adenocarcinoma. Cancer Lett. 2022 Sep 19;551:215922. doi: 10.1016/j.canlet.2022.215922. Epub ahead of print. PMID: 36285687.
Ding L, Tang S, Yu A, Wang A, Tang W, Jia H, Oupický D. Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10015-10029. doi: 10.1021/acsami.1c21997. Epub 2022 Feb 21. PMID: 35188730; PMCID: PMC9153289.
Frodyma DE, Troia TC, Rao C, Svoboda RA, Berg JA, Shinde DD, Thomas VC, Lewis RE, Fisher KW. PGC-1β and ERRα Promote Glutamine Metabolism and Colorectal Cancer Survival via Transcriptional Upregulation of PCK2. Cancers (Basel). 2022 Oct 5;14(19):4879. doi: 10.3390/cancers14194879. PMID: 36230802; PMCID: PMC9562873.
Khan R, Panja S, Ding L, Tang S, Tang W, Kapoor E, Bennett RG, Oupický D. Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Mol Pharm. 2022 Dec 5;19(12):4631-4643. doi: 10.1021/acs.molpharmaceut.2c00596. Epub 2022 Nov 8. PMID: 36346968.
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech. 2022 Jul 13;23(6):195. doi: 10.1208/s12249-022-02345-2. PMID: 35831684.
Ouellette SP, Fisher-Marvin LA, Harpring M, Lee J, Rucks EA, Cox JV. Localized cardiolipin synthesis is required for the assembly of MreB during the polarized cell division of Chlamydia trachomatis. PLoS Pathog. 2022 Sep 12;18(9):e1010836. doi: 10.1371/journal.ppat.1010836. PMID: 36095021; PMCID: PMC9499288.
Pramanik S, Chen Y, Song H, Khutsishvili I, Marky LA, Ray S, Natarajan A, Singh PK, Bhakat KK. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulates KRAS expression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Res. 2022 Apr 8;50(6):3394-3412. doi: 10.1093/nar/gkac172. PMID: 35286386; PMCID: PMC8990529.
Rajesh C, Sagar S, Rathinavel AK, Chemparathy DT, Peng XL, Yeh JJ, Hollingsworth MA, Radhakrishnan P. Truncated O-Glycan-Bearing MUC16 Enhances Pancreatic Cancer Cells Aggressiveness via α4β1 Integrin Complexes and FAK Signaling. Int J Mol Sci. 2022 May 13;23(10):5459. doi: 10.3390/ijms23105459. PMID: 35628269; PMCID: PMC9141077.
Tang S, Kapoor E, Ding L, Yu A, Tang W, Hang Y, Smith LM, Sil D, Oupický D. Effect of tocopherol conjugation on polycation-mediated siRNA delivery to orthotopic pancreatic tumors. Biomater Adv. 2022 Dec 6;145:213236. doi: 10.1016/j.bioadv.2022.213236. Epub ahead of print. PMID: 36512927.
Tang W, Panja S, Jogdeo CM, Tang S, Ding L, Yu A, Foster KW, Dsouza DL, Chhonker YS, Jensen-Smith H, Jang HS, Boesen EI, Murry DJ, Padanilam B, Oupický D. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials. 2022 Jun;285:121562. doi: 10.1016/j.biomaterials.2022.121562. Epub 2022 May 2. PMID: 35552115; PMCID: PMC9133205.
Tang W, Panja S, Jogdeo CM, Tang S, Yu A, Oupický D. Study of Renal Accumulation of Targeted Polycations in Acute Kidney Injury. Biomacromolecules. 2022 May 9;23(5):2064-2074. doi: 10.1021/acs.biomac.2c00079. Epub 2022 Apr 8. PMID: 35394757; PMCID: PMC9150723.
Wang O, Han L, Lin H, Tian M, Zhang S, Duan B, Chung S, Zhang C, Lian X, Wang Y, Lei Y. Fabricating 3-dimensional human brown adipose microtissues for transplantation studies. Bioact Mater. 2022 Oct 27;22:518-534. doi: 10.1016/j.bioactmat.2022.10.022. PMID: 36330162; PMCID: PMC9619153.
Wu S, Li Y, Zhang C, Tao L, Kuss M, Lim JY, Butcher J, Duan B. Tri-Layered and Gel-Like Nanofibrous Scaffolds with Anisotropic Features for Engineering Heart Valve Leaflets. Adv Healthc Mater. 2022 May;11(10):e2200053. doi: 10.1002/adhm.202200053. Epub 2022 Mar 21. PMID: 35289986.
Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater. 2022 Feb;139:91-104. doi: 10.1016/j.actbio.2020.11.042. Epub 2020 Nov 30. PMID: 33271357; PMCID: PMC8164650.
Xue W, Kong Y, Abu R, Roy P, Huh SH, Kuss M, Kumar V, Duan B. Regulation of Schwann Cell and DRG Neurite Behaviors within Decellularized Peripheral Nerve Matrix. ACS Appl Mater Interfaces. 2022 Feb 23;14(7):8693-8704. doi: 10.1021/acsami.1c20320. Epub 2022 Feb 11. PMID: 35148064.
Yu A, Tang S, Ding L, Foley J, Tang W, Jia H, Panja S, Holbert CE, Hang Y, Stewart TM, Smith LM, Sil D, Casero RA Jr, Oupický D. Hyaluronate-coated perfluoroalkyl polyamine prodrugs as bioactive siRNA delivery systems for the treatment of peritoneal cancers. Biomater Adv. 2022 May;136:212755. doi: 10.1016/j.bioadv.2022.212755. Epub 2022 Mar 17. PMID: 35929290.
Zhang C, Hang Y, Tang W, Sil D, Jensen-Smith HC, Bennett RG, McVicker BL, Oupický D. Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics. 2022 Mar 18;14(3):669. doi: 10.3390/pharmaceutics14030669. PMID: 35336043; PMCID: PMC8949580.
Zhang D, Tu H, Hu W, Duan B, Zimmerman MC, Li YL. Hydrogen Peroxide Scavenging Restores N-Type Calcium Channels in Cardiac Vagal Postganglionic Neurons and Mitigates Myocardial Infarction-Evoked Ventricular Arrhythmias in Type 2 Diabetes Mellitus. Front Cardiovasc Med. 2022 Apr 25;9:871852. doi: 10.3389/fcvm.2022.871852. PMID: 35548411; PMCID: PMC9082497.