Nanomedicines and Translational Research Laboratory
Research Activities
These are exciting times in the scientific world. The public all over the world is fascinated by the spectacular advances in gene therapy, sequencing of the human genome, and stem cell research. These advances promise to prevent, correct or modulate genetic and acquired diseases, which use genes to produce therapeutic proteins or inhibit aberrant protein production.
The launching of the human proteome project has turned functional genomics and proteomics into powerful bullworks, which will give us an integrated scenario of turning nucleic acids into therapeutics. The development of effective nucleic acid therapeutics demands teamwork among scientists with expertise in molecular and cell biology, biochemistry, biophysics, polymer chemistry, colloid science, pharmaceutics, and medicine.
In the last decade, significant progress has been made in the use of nucleic acids, such as plasmid DNA, antisense oligonucleotides, siRNA, miRNAs for therapy of different diseases including cancers, liver disease, diabetes among others.
Ongoing Research Projects
We are working on the site-specific delivery of oligonucleotides and microRNA to hepatocytes or hepatic stellate cells for treatment of hepatitis and liver fibrosis. We have previously shown that the conjugation of siRNA to mannose-6-phosphate- PEG (M6P-PEG) can significantly enhance its delivery to hepatic stellate cells and this M6P-PEG-siRNA has the potential to treat liver fibrosis by inhibiting excess of collagen synthesis (Zhu et al, Bioconjug Chem, 2010, 21: 2119-2127).
We are developing several novel amphiphilic copolymers and lipopolymers for use as micellar delivery of small molecular weight hydrophobic anti-cancer drugs (Danquah et al, J. Polym. Sci.A Polym. Chem. 2013, 51: 347–362, Danquah et al, Biomaterials. 2010, 31:2358-70. and Li et al., Biomacromolecules. 2010, 11:2610-20).