UNMC_Acronym_Vert_sm_4c
University of Nebraska Medical Center

Indirect and direct effects of nighttime light on COVID-19 mortality using satellite image mapping approach

Nature The COVID-19 pandemic has highlighted the importance of understanding environmental factors in disease transmission. This study aims to explore the spatial association between nighttime light (NTL) from satellite imagery and COVID-19 mortality. It particularly examines how NTL serves as a pragmatic proxy to estimate human interaction in illuminated nocturnal area, thereby impacting viral transmission dynamics to neighboring areas, which is defined as spillover effect. Analyzing 43,199 COVID-19 deaths from national mortality data during January 2020 and October 2022, satellite-derived NTL data, and various environmental and socio-demographic covariates, we employed the Spatial Durbin Error Model to estimate the direct and indirect effect of NTL on COVID-19 mortality. Higher NTL was initially directly linked to increased COVID-19 mortality but this association diminished over time. The spillover effect also changed: during the early 3rd wave (December 2020 – February 2021), a unit (nanoWatts/sr/cm2) increase in NTL led to a 7.9% increase in neighboring area mortality (p = 0.013). In contrast, in the later 7th wave (July – September 2022), dominated by Omicron, a unit increase in NTL resulted in an 8.9% decrease in mortality in neighboring areas (p = 0.029). The shift from a positive to a negative spillover effect indicates a change in infection dynamics during the pandemic. The study provided a novel approach to assess nighttime human activity and its influence

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

TgQDgarexcvHSmY fnu