UNMC_Acronym_Vert_sm_4c
University of Nebraska Medical Center

Research explains the role of high cholesterol in SARS-CoV-2 infectivity

Medical Xpress A recent study has unveiled the doorway that SARS-CoV2 uses to slip inside cells undetected.

SARS-CoV-2 uses the receptor angiotensin-converting enzyme 2, or ACE2, to infect human cells. However, this receptor alone does not paint a complete picture of how the virus enters cells. ACE2 is like a doorknob; when SARS-CoV-2 grabs it and maneuvers it precisely, this allows the virus to open a doorway to the cell’s interworking and step inside, but the identity of the door has eluded scientists.

Scott Hansen, an associate professor of molecular medicine at the University of Florida Scripps, discovered that cholesterol clusters make up that door. His team published their work in the Journal of Biological Chemistry.

Early on in the COVID-19 pandemic, the elderly and people with chronic diseases such as hypertension, diabetes, Alzheimer’s and cardiovascular diseases experienced more viral-related deaths. However, children seemed to be less susceptible.

Hansen hypothesized that part of this phenomenon was due to the high amounts of tissue cholesterol in populations with chronic disease. From 2017 to 2020, 86.4 million U.S. adults age 20 or older had high or borderline high cholesterol in the blood.

After completing studies using cutting-edge technology like super resolution microscopy, his team showed that cholesterol on the cell surface makes ACE2 readily accessible to SARS-CoV2 for cell entry.

“Our cells have a protective coat of lipids, or fat, that keeps out invaders and bad molecules,” Hansen said. “Cholesterol is a part of a place where nutrients come into the cell. I live in Florida; so we think of this mechanism as, if a hurricane is coming, you batten down the hatches after collecting resources. But this virus is sneaking in when you pull the door closed.”

Cholesterol is necessary for survival, but too much cholesterol may be increasing your risk for COVID-19 at the cellular and biochemical levels.

Continue reading

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.