

Associate Professor Transplant and Oncology ID University of Nebraska Medical Center (UNMC) Omaha, NE, USA carlosgomez@unmc.edu

>Universal prophylaxis vs. Preemptive therapy in SOT? For whom? when? >Letermovir for CMV prophylaxis > Treatment for CMV viremia/Disease: How the new agents (Maribavir, letermovir) are doing? > Immune monitoring > CMV vaccine

Universal Prophylaxis vs Preemptive therapy (PET): Guidelines recommendations

Organ	CMV serostatus D+/R-	CMV serostatus R+	
Kidney	VGCV, IV GCV, valacyclovir x 6 months OR preemptive	VGCV (preferred), GCV, valacyclovir > 3 months OR preemptive	
Pancreas, kidney/pancreas	VGCV, IV GCV x 3 to 6 months OR preemptive	VGCV, IV GCV x 3 months OR preemptive	
iver	VGCV, IV GCV x 3 to 6 months OR preemptive	VGCV, IV GCV x 3 months OR preemptive VGCV, IV GCV x 3 months ± surveillance after VGCV, IV GCV x 3 months OR preemptive	
ntestine	VGCV, IV GCV x 6 months \pm surveillance after		
leart	VGCV, IV GCV x 3 to 6 months OR preemptive		
ung	VGCV, IV GCV x at least 6 to 12 months Some centers extend beyond 12 months	VGCV, IV GCV x 6 to 12 months	

Key Take-home Points

- PET and antiviral prophylaxis are both valid CMV prevention strategies used during high-risk periods
 - The Devil is in the details: Cost, access to timely CMV-DNAemia results and prompt initiation of therapy
 - Immunological benefits of PET, (ie, better control CMV DNAemia)→can improve long-term survival (but need a RCT in D+/R- Kidney transplant)

	Universal Prophylaxis	Preemptive Therapy	
Advantages	 Large body of supporting evidence Ease of implementation Possible greater impact on indirect effects of CMV 	 Reduced drug exposure Decreased cost, risk of toxicity, and resistance Lower risk for late-onset CMV 	
Disadvantages	 Increased antiviral drug exposure Increased cost, toxicity, and/or resistance Increased risk for late-onset postprophylaxis CMV disease 	 Logistical demands of laboratory monitoring and coordination Uncertainty about impact on the indirect effects of CMV CMV viral thresholds for initiating and/or discontinuing therap are not well-defined Systematic evaluation in thoracic organ recipients is lacking 	

Updates in CMV prevention in SOT. Infectious Disease Clinics of North America, in press, Nov 2023

Agents for Prevention and Treatment of CMV in SOT and HCT

0	or prophylaxis al	nd treatment	or cytomegalovirus inte	ection and disease		
Drug	Target	Route	Indications/clinical uses	Major toxicities	Activity against other herpes viruses	Comments
Cidofovir	UL54 DNA polymerase	IV	Treatment	Nephrotoxicity, myelosuppression, ocular, and alopecia	Yes: HSV, VZV, and HHV6	Alternative for treatment due to high risk of toxicity
Foscarnet	UL54 DNA polymerase	IV	Treatment	Nephrotoxicity, electrolyte loss, and myelosuppression	Yes: HSV, VZV, and HHV6	Alternative for treatment due to high risk of toxicity
Ganciclovir	UL54 DNA polymerase	IV	Treatment and prophylaxis	Myelosuppression, especially leukopenia and neutropenia	Yes: HSV, VZV, and HHV6	First-line treatment of CMV disease, especially if severe and life-threatening
Maribavir	UL97 kinase	Orally or by mouth	Treatment (resistant and refractory CMV)	Dysgeusia and gastrointestinal effects	In vitro: EBV (no data in vivo)	Poor CNS penetration Consider adding HSV-active drug during high-risk periods May increase levels of
Letermovir	UL56, UL51, UL89 terminase	IV, orally or by mouth	Prophylaxis	Gastrointestinal effects	None	Immunosuppressants Consider adding HSV-active drug during high-risk periods Low barrier of resistance
						May increase levels of immunosuppressants
Valganciclovir	UL54 DNA polymerase	Orally or by mouth	Treatment and prophylaxis	Myelosuppression, especially leukopenia and neutropenia	Yes: HSV, VZV, and HHV6	First-line treatment of asymptomatic and mild-to-moderate CMV disease

11

Letermovir

- Novel mechanism of action
 - Inhibits viral terminase complex (DNA cleavage and packaging)
- No activity against herpesviruses other than CMV
- Toxicity: comparable to placebo in trials, drug interactions (vori)
- Clinical use: Approved for CMV prophylaxis in HCT
 - Low barrier to resistance
- Mechanism of resistance
 - UL56, UL89

Letermovir vs VGCV: (D+/R-) Kidney Transplant

A Adverse events (AEs)	No./total No.	. (%)				prophylaxis: when using
Events	Letermovir (n=292) ^a	Valganciclovir (n=297)	Difference (95% CI), %	Favor letermov	s Favors ir valganciclovir	
≥1 leukopenia or neutropenia event ^b	76 (26.0)	190 (64.0)	-37.9 (-45.1 to -30.3)	- -		
Leukopenia reported as an AE	33 (11.3)	110 (37.0)	-25.7 (-32.3 to -19.1)	⊢ •1		
WBC count <3500 cells/µL	66 (22.6)	172 (57.9)	-35.3 (-42.5 to -27.7)			NARE -
Neutropenia reported as an AE	8 (2.7)	49 (16.5)	-13.8 (-18.7 to -9.3)			
ANC <1000 cells/µL	12 (4.1)	58 (19.5)	-15.4 (-20.7 to -10.5)			A and a second
			-5	0 -40 -30 -20 -10 Difference (9	0 10 20 30 5% Cl), %	State P
Letermovir preven	noninfer tion with	ior to valga improved s	nciclovir for CM safety profile	/		

Limaye. JAMA. 2023;330:33.

Letermovir for Refractory/Resistant CMV

- Limited clinical studies in R/R CMV disease –off-label indication
- Multicenter study 47 SOT and HCT¹
 - VL (<1000 IU/mL): 35/37 clear, 5% failure rate</p>
 - VL (>1000 IU/mL): 6/10 clear, 40% failure rate

28-Lung transplant patients with R/R CMV²

- 14 patients with VL >10,000 IU/mL
- 82% response with VL decline >1 log
- 3 patient developed LTMV resistance (UL56, C325y)
- Uncertainty about adequate dosing and low barrier to resistance³
- More studies needed before can be recommended first line for treatment⁴
- 1. Linder KA, et al. Transpl Infect Dis. 2021;23(4):e13687.
- 2. Veit T, et al. Am J Transplant. 2021;21(10):3449-3455.
- 3. Hakki M. Curr Hematol Malig Rep. 2020;15(2):90-102.
- 4. Shigle TL, et al. Ther Adv Hematol. 2020;11:2040620720937150.

SOLSTICE: Marabivir vs Investigator Assigned Therapy (IAT) for R/R CMV Infections

- Randomized, open-label phase III study in HSCT and SOT recipients with refractory CMV infections (± resistance); treated x 8 wk
- Primary endpoint: maribavir superior to IAT for CMV clearance at end of Wk 8
- Safety endpoints: maribavir associated with lower rates of AKI vs FOS (8.5% vs 21.3%) and neutropenia vs GCV/VGCV (9.4% vs 33.9%)

Confirmed Viremia Clearance and Symptom Control

19

Avery. Clin Infect Dis. 2022;75:690.

Received: 7October 2022 Revised: 14 December 2022 Accepted: 2 Febr DOI: 10.1111/ctr.14929	unry 2023 Clinical TRANSPLANTATION WILEY WILEY	sistance.	
Real world experience with Ma cytomegalovirus in solid organ	ribavir for the treatment of transplant recipients		
	TABLE 1 Comparison of patients who experienced CMV breakthro	ugh versus those who did not	Development (n - A)
Open Forum Infectious Diseases	Transplant type Kidney Lung	7 (77.8) 2 (22.2)	2 (50) 2 (50)
	CMV D+/R-	7 (77.8)	4 (100)
	AR treatment within preceding 6 months of first CMV detection	0(0)	1 (25)
Treatment in the Real World—Not	Median time from transplant to first CMV detection, days (IQR)	153 (78-285)	222 (149-268)
a Silver Bullet	Median peak CMV viral load prior to maribavir initiation, IU/ml (IQR)	28,300 (13,700-105,000)	121,350 (4,956-716,500)
	Documented CMV resistance at maribavir initiation	Yes: 5 Indeterminate: 2 No: 2	Yes: 2 Indeterminate: 1 No: 1
eived: 5 February 2024 Revised: 8 February 2024 Accepted: 12 February 2	2024 Median CMV viral load at maribavir initiation. IU/ml (IOR)	5.714 (200-13.700)	1.556 (106-8.486)
:10.1111/00.14259	Median duration of maribavir exposure, days (IQR)	146 (67-217)	76 (66-94)
	Note: n/%) unless otherwise specified		

Key Take-home Points in R/R CMV

- Recurrent CMV: 19-30% SOT
 - D+/R-
 - Lung transplants
- Resistance <5%
 - Prolonged drug exposure
 - Inadequate antiviral delivery/dosing
- Maribavir (blocks UL97 protein kinase): newest agent for R/R CMV
 - More CMV clearance than "best-available therapy" (56% vs 23%); but still high rate of rebound viremia after 8-weeks
 - Treatment-emergent UL97 mutations occur frequently:
 - 48% non-responders
 - 86% non-responder with recurrence while on therapy
 - 17% responders with recurrence after on therapy
- Letermovir
 - Concern for low-barrier resistance
 - Role in R/R likely highly individualized for those with VL and lacking alternatives
 - Further studies needed

25

Unmet needs in CMV and Transplantation

Burden	CMV remains a common problem posttransplant despite decades of treatment and diagnostic advances
Guidelines	Good guidelines are available but unable to personalize the best prophylactic and treatment course for individual patients
Antiviral management	Late CMV remains a major concern in high-risk patients at the end of prophylaxis
	Few RCTs have compared prophylaxis with pre-emptive therapy
	In allo-HCT, not all patients are eligible for standard CMV prophylaxis and appropriate management is still to be established in these patients
	Resistant/refractory CMV infection remains an issue for a small subset of patients
	Current prophylactic and therapeutic agents have issues of toxicity and cost, although letermovir as prophylaxis in kidney transplant recipients may be associated with less toxicity
Immune modulation	An "ideal" CMI assay is required before immune monitoring becomes part of routine clinical practice in all laboratories and a clinical tool for individualized decision making
	How to use CMVIG or CMV-specific T cells in clinical practice is still to be established
Vaccination	Lack of effective CMV vaccines remain a major deficit in the field

Slaying the "Troll of Transplantation"—new frontiers in cytomegalovirus management: A report from the CMV International Symposium, Barcelona May 2023

Transpl Infect Dis. 2024;26:e14183. https://doi.org/10.1111/tid.14183

