

Overview

- Limitations of immunosuppression and current immunosuppression protocols
- Need for individualized immune risk stratification
- Immune risk stratification and role of HLA matching at a molecular level –HLA eplets
- Future directions

B

Short term kidney transplant and patient survival is excellent with immunosuppressive regimens resulting in progressively lower biopsy proven acute rejection (BPAR) rates (5-15%)

Long term graft survival remains suboptimal

- o Half life 11-15 years
- 10 year graft loss rates with very modest improvement

3

Major limits to long term transplant outcomes

- Immunologic risk is inherent to kidney transplant and alloimmune injury is a cardinal cause of graft loss
- Unwanted side effects of immunosuppression
 - Increased risk of infections and cancer
 - Off target effects of immunosuppressive medications
 - Nephrotoxicity
 - · Adverse effects on blood pressure, lipids, and glucose metabolism

One size fits all?

Majority of U.S. transplant center protocols use homogenous immunosuppression regimens:

- Induction immunosuppression
 - Typically rabbit ATG
- Maintenance immunosuppression
 - -Tacrolimus higher levels initially then taper to lower target
 - -Anti-proliferative (e.g mycophenolate)
 - -+/- steroids

7

How we currently assess risk and adjust immunosuppression

Panel of Reactive Antibodies (PRA)

High PRA is bad. Low PRA is good

HLA Mismatch

Donor Specific HLA antibodies pre and post transplant

Bad things happening to the kidney

- Rejection, graft dysfunction
 Bad things happening to the patient
- Infection, cancer, medication side effects

Protocol Driven - Reactive Immunosuppression

- Current approach results in excellent population based short term outcomes
- Subsets of patients with significant complications
 - · Significant or persistent rejection
 - Adverse effects from suppressed immune system infections/cancer
 - · Side effects from medications
- Long term outcomes remain suboptimal

9

Need for individualized risk stratification

- Ideal immunosuppression regimen:
 - Give as little immunosuppression as possible
 - Minimize off-target effects of immunosuppression
 - Not compromise protection from alloimmune response
- Transplant population is heterogenous with varying risk of rejection
 - · Age of recipient
 - Immune memory
 - Histocompatibility with donor

HLA Compatibility

- HLA match and mismatch
 - Match: HLA antigens shared by donor and recipient
 - Mismatch: HLA antigens in donor NOT present in recipient
- Presence (or absence) of Donor Specific Antibodies
 - Recipient HLA antibodies to donor HLA antigens

11

Donor and Recipient HLA Matching HLA matching

Donor and Recipient typed for HLA genes

Example

Recipient HLA type: A1 A24 B8 B35 DR15 DR 17 DQ2 DQ6 Donor HLA type: A3 A24 B8 B44 DR13 DR 17 DQ2 DQ6

3 out of 8 Antigen mismatch HLA mismatch 1/1/1/0

1 HLA A MM

1 HLA B MM

1 HLA DR MM

0 HLA DQ MM

Class II HLA mismatch at DR (and DQ) associated with increased rejection and worse graft survival

Roberts et al., NEJM (2004) 350:545-51

HLA DR matching for deceased donor allocation

- Prospective recipients for a deceased donor kidney get 0 to 2 points for DR matching
 - 0 DR mismatch = 2 points
 - 1 DR mismatch = 1 point
 - 2 DR mismatch = 0 points

Not all HLA mismatches are equal

Donor HLA antigens may have varying ability to generate an alloimmune response in a specific kidney transplant recipient

Variable alloimmune response dependent upon degree of difference between donor and recipient antigens (and ability of recipient to

react to donor HLA)

15

HLA protein sequences are both conserved (required for function) and polymorphic (variability)

High degree of homology in HLA protein sequence

> Represented by dashes in figure

Polymorphic amino acids at certain residues

- May be shared by some alleles
- Give each allele its unique reactivity pattern

Tambur Front. Immun. Aug 2018 (9):2010

Alloimmune Risk Assessment

HLA Molecular Mismatch induces BCR Allorecognition
Biological Basis is the Epitope – Paratope Structural Relationship

Antigenicity
Binding Affinity
Donor Specific
Aminoacids

Pediatr Nephrol (2017) 32:1861-69

18

HLA Matchmaker

- A molecularly based algorithm for histocompatibility determination
 - · Eplet matching for HLA-DR, HLA-DQ, and HLA-DP

Requires High Resolution, Allele level HLA Typing

Patient HLA	Donor HLA	mmEp	Mismatched Donor Eplets
DRB1*1101	DRB1*0405	11	, 12VKH,14HEH,, 32FYH,34HQ,, 57SA, 67LR,71QRA,, 96YL,98EN, 120N,, 180LT,
DRB1*1302	DRB1*1119	1	
DRB3*0101	DRB3*0202		innuminounimin
DRB3*0202	DRB4*0101	19	4Q,18L,12AKC,14CEH,16HLW,26WN,32IYN,,41YNL,48YQ,,,67LR,71RRA,,81YV,85VV,96QM,98KNI
DQB1*0301	DQB1*0301	2	omanimumoniu
DQB1*0301	DQB1*0302	7	,14GM, ,26L, ,45GV,46GVY, ,,57PA, , , , , , , , ,167RG, ,185I, , ,
DQA1*0103	DQA1*0302	13	,25YS,34HE,41ER,,47EQL,48LF,50LF,52FRR,56RR,,75IVR,80IRS,,160DD,,175E,187T
DQA1*0505	DQA1*0505		парашанания
DPB1*0301	DPB1*0201	4	minimum _
DPB1*0201	DPB1*2301	3	,,,55AA,56AE,,,,,,
DPA1*0103	DPA1*0103		0000
DPA1*0103	DPA1*0103		

Duquesnoy and Askar, Human Immunology (2007) 68:12-25

19

Risk assessment of HLA mismatch

Antigen vs Molecular mismatch

HLA Mismatch increases risk of rejection, DSA, and graft loss

Molecular assessment of HLA eplets may help differentiate degree of mismatch

0, 1, or 2 antigen mismatch Vs 0 to 40 eplet mismatch

Weibe J Am Soc Nephrol 28: 3353–3362, 2017

__

High immunologic risk patients (defined by eplet mismatch) with low tacrolimus levels at higher risk for developing DSA "High risk" Recipients with more DR/DQ eplet % Tacrolimus levels < 5 ng/ml 30% mismatches "High risk" patients with DSA had higher percentage 20% of low tacrolimus levels 15% "Low risk" Recipients with less 10% DR/DQ eplet mismatches 5% "Low risk" patients did NOT develop DSA with a higher percentage of low tacrolimus levels High Alloimmune Risk dnDSA (HLA-DR or DQ Eplet MM >11) Wiebe et al JASN 2017 28: 3353-3362

Data showing predictive nature of DR/DQ Molecular matching for rejection, DSA, and graft loss are all **Retrospective**

RTB-015

ASSESSMENT OF BIOMARKER-GUIDED CNI SUBSTITUTION

IN KIDNEY TRANSPLANTATION

ABCs Trial

PETER HEEGER / PETER NICKERSON

27

RTB-015: Assessment of Biomarker-guided CNI substitution (ABCs Trial)

Rationale for Study Design

To prospectively test the **prognostic** and **predictive** function of the **HLA mMM biomarker in kidney transplant**

The design includes a prospective Observational Study AND a linked, Nested randomized controlled trial (RCT)

 In the Observational Study we will prospectively validate the prognostic utility of HLA-DR/DQ mMM to identify subjects at risk for a primary alloimmune response (Rejection/DSA), AND we will identify immunologically quiescent subjects eligible for the RCT

Slide adapted from P. Nickerson with permission

RTB-015: ASSESSMENT OF BIOMARKER-GUIDED CNI SUBSTITUTION (ABCs TRIAL)

- Prospective Observational Study Determine the PROGNOSTIC and PREDICTIVE ability of HLA DR/DQ molecular mismatch in Kidney Transplantation
- Nested RCT- Determine the ability of the HLA DR/DQ mMM to PREDICT who will benefit from CNI substitution with abatacept.

31

Next Steps

- Identify HLA mismatch epitopes that drive immunogenicity
 - Number of mismatches
 - Location of mismatches
 - Nature of mismatched epitopes
- Clinical Trials to test hypothesis
 - Immunosuppression modification/minimization
- Allocation optimization?

