Rapid Molecular Biomarker Testing at Primary Diagnosis and Beyond: We Can Do a Lot With a Little

Allison Cushman-Vokoun, MD, PhD

Professor, Department of Pathology, Microbiology and Immunology

University of Nebraska Medical Center

Director, Division of Diagnostic Molecular Pathology and Human Genetics

Medical Director, Molecular Diagnostics and Personalized Medicine Laboratory, Nebraska Medicine

Disclosures

Dr. Cushman-Vokoun was provided an honorarium by Thermo Fisher Scientific to give a similar presentation. She has no other financial disclosures related to this talk.

The problem:

- Therapy planning for patients with a cancer diagnosis requires knowledge of biomarker status, especially in lung cancer.
- Patients with advanced cancer need testing of the most recent tissue.
- Biomarker-driven decisions are time-sensitive.
- Testing should be done rapidly.
- New recommendations suggest "up-front" testing of diagnostic tissue

Practical Issues

- Tissue acquisition is often minimally-invasive
- Small biopsies requiring lots of testing
 - H&E levels
 - Immunohistochemistry stains
 - Molecular analysis for multiple analytes
- Tumor is not always predominant population

The solution

- Do multiple biopsies or passes
 - More invasive and expensive
- Order a liquid biopsy
 - Requires special processing
 - Highly sensitive assays are needed
 - Does not always reflect tissue findings
- Use technology that can handle small tumor tissue volumes

Next Generation Sequencing (NGS) by Semi-Conductor Technology

Used with permission, Thermo Fisher Scientific

Semi-conductor sequencing

Polymerase integrates a nucleotide.

Hydrogen and pyrophosphate are released.

Biomarkers that should be assessed

Up-front testing on Non- Small Cell Lung Cancer (NSCLC) at diagnosis

	1	D	NA hotspo	ots		CN	Vs	Inter-gene	tic fusions	Intra-genetic fusions
Solid Tumor	AKT1	CHEK2	FGFR3	KIT	NTRK3	ALK	FGFR1	ALK	NTRKI	AR
Precision	AKT2	CTNNB1	FGFR4	KRAS	PDGFRA	AR	FGFR2	BRAF	NTRK2	EGFR
Panel	AKT3	EGFR	FLT3	MAP2K1	PIK3CA	CD274	FGFR3	ESR1	NTRK3	MET
	ALK	ERBB2	GNA11	MAP2K2	PTEN	CDKN2A	KRAS	FGFR1	NUTM1	
(3177)	AR	ERBB3	GNAQ	MET	RAF1	EGFR	MET	FGFR2	RET	
Assay	ARAF	ERBB4	GNAS	MTOR	RET	ERBB2	PIK3CA	FGFR3	ROS1	
Amplicon	BRAF	ESR1	HRAS	NRAS	ROS1	ERBB3	PTEN	MET	RSPO2	
Based	CDK4	FGFR1	IDHT	NTRKI	SMO			NRG1	RSP03	
	CDKN2A	FGFR2	IDH2	NTRK2	TP53					
			DNA			DN	A	RN	JA	RNA

Receptor Tyrosine Kinase Pathways

Non-Small Cell Lung Cancer (NSCLC) Cases

Case 1 Clinical History

- Female non-smoker in her seventies
- Presented to the Emergency Room with shortness of breath and weight loss
- Left-sided loculated pleural effusion
- Two left lung masses and mediastinal lymphadenopathy
- Thoracentesis performed

Amplicon Based NGS panel (pleural fluid)

Gene	Alteration	Classification	VAF	Total Coverage
EGFR	c.2235_2249del;p. E746_A750del	Tier 1A - Pathogenic	33%	7692
TP53	c.841G>C;p.D281H	Tier 2C - Likely Pathogenic	27%	3754

Drug	Response to Drug	Atteration Detected	Condition	Other Relevant Information	Line of Therapy	Source
Ataunib	Primary sensitivity	EGFR Exon 19 Deletion (E746_A750del)	Non-Small Cell Lung Cancer	Single agent (FDA, NCCN), or may be considered in combination with celuximab after progression on afathilb, erlotinib, gefittinib, or dacomitinib, and chemotherapy (NCCN).	Metastatic	FDA, NCCN
Dacomitinib	Primary sensitivity	EGFR Exon 19 Deletion (E746_A750del)	Non-Small Cell Lung Cancer		Metastatic	FDA. NCCN
Eriotinito	Primary sensitivity	EGFR Exon 19 Deletion (E746_A750del)	Non-Small Cell Lung Cancer	Single agent or in combination with ramucirumab (FDA, NCCN), or in combination with bevacizumab (NCCN, non-squamous only).	Metastatic	FDA. NGCN
Gefilinib	Primary sensitivity	EGFR Exon 19 Deletion (E746_A750ttal)	Non-Small Cell Lung Cancer		Metastalic	FDA, NCCN
Osimertinib	Primary sensitivity	EGER Exon 19 Deletion (E746_A750del)	Non-Small Cell Lung Cancer	Preferred first-line therapy, per NCCN. Also approved as adjuvant therapy.	Metastatic	FDA, NGCN

- No surgical intervention
- Continued reduction or stabilization of lesions and effusion
- Effect of TP53 variant¹ ?

¹The Role of TP53 Mutations in EGFR-Mutated Non-Small-Cell Lung Cancer: Clinical Significance and Implications for Therapy. Cancers (Basel). 2022 Feb 23;14(5):1143.

Case 2 Clinical History

- 70 year old male
- Former remote smoker 1967-1980
- Presented with cirrhosis (NASH?) and hepatocellular carcinoma
- Incidental right upper lobe lesion identified

Right middle lobe lung biopsy Adenocarcinoma, focal papillary features TTF-1 + Napsin +

Amplicon Based NGS panel (on biopsy)

Clinically Significant Alterations (Tier 1 or Tier 2 and/or Pathogenic or Likely Pathogenic):

EML4::ALK Fusion (Tier 1A)

Follow up treatment

- Referred to an outside oncologist
- Other co-morbidities being addressed
- Lost to follow up

Drug	Response to	Alteration	Condition	Other Relevant Information	Line of	Source
	Drug	Detected			Therapy	
Alectinib	Primary sensitivity	ALK Fusion	Non-Small Cell Lung Cancer	Approved by FDA for patients with ALK-positive, metastatic NSCLC.	Metastatic	FDA, NCCN
Brigatinib	Primary sensitivity	ALK Fusion	Non-Small Cell Lung Cancer	Approved by FDA for patients with ALK-positive, metastatic NSCLC.	Metastatic	FDA, NCCN
Ceritinib	Primary sensitivity	ALK Fusion	Non-Small Cell Lung Cancer	Approved by FDA for patients with ALK-positive metastatic NSCLC.	Metastatic	FDA, NCCN
Crizotinib	Primary sensitivity	ALK Fusion	Non-Small Cell Lung Cancer	Approved by FDA for patients with ALK-positive or ROS1-positive metastatic NSCLC.	Metastatic	FDA, NCCN
Lorlatinib	Primary sensitivity	ALK Fusion	Non-Small Cell Lung Cancer	Approved by FDA for patients with ALK-positive, metastatic NSCLC.	Metastatic	FDA, NCCN

Expression Imbalance (different patient)

ALK OALE ONTER3 m -log(p-value) N 0,8 HA H 10 15 20 25 OFURA 30 5 Leica ALK (2p23) Dual Color Breakapart Probe 0 · HNBS 3 0 imbalance score Liver Biopsy – Poorly **Differentiated Carcinoma** abnormal of Unknown Origin

ALK Amplification CN=5.0 by NGS

Positive for rearrangement of the ALK (2p23) locus (92%)

S

0

S

-10

corrected read counts

Case 3 Clinical History

- Female in her mid-50s Never Smoker
- Some left axillary discomfort, otherwise asymptomatic
- Screening mammogram and MRI revealed incidental Right Hilar Lymphadenopathy
- Right lower lobe lung mass biopsied

Lymph Node Station 7 Biopsy

Adenocarcinoma Papillary and micropapillary type TTF1 + Napsin A + PDL1 – TPS score 20% (partial positive)

DNA concentration: 1.0 ng/µl RNA concentration: 2.87 ng/µl

Amplicon Based NGS panel (on tissue)

Clinically Significant Alterations

CCDC6::RET Fusion (Tier 1A)

TP53 p.R267P (Tier 2C)

Current Treatment

- Started on neoadjuvant chemotherapy without immunotherapy due to RET fusion**
- Undergoing resection after neoadjuvant therapy

In advanced or metastatic disease

Onio	Pasnonsa	Attoration	Condition	Other Balayant Information	Line of	Source
Sing	to Drug	Detected	Congition		Therapy	Course
Cabozantinib	Primary sensilivity	RET Fusion	Non-Small Cell Lung Cancer	Recommended by NCCN under Calegory 2A.	Metastatic	NCCN
Pralsetinib	Primary sensilivity	RET Fusion	Non-Small Cell Lung Cancer	Indicated for adult patients with metastatic RET fusion-positive NSCLC.	Metastatic	FDA, NCCN
Selpercatinib	Primary sensitivity	RET Fusion	Non-Small Cell Lung Cancer	Approved for adult patients with metastatic RET fusion-positive NSCLC.	Metastatic	FDA, NCCN
Selpercatinib	Primary sensitivity	RET Fusion	Non-Small Cell Lung Cancer	Indicated for locally advanced or metastatic solid tumors with a RET fusion, who had progression on prior systemic treatment or have no satisfactory alternative options.	Metastatic	FDA

**BMC Cancer. 2024 Feb 5;24(1):178. **JCO Precis Oncol. 2019;3:PO.18.00386. doi: 10.1200/PO.18.00386. ** https://ascopubs.org/doi/10.1200/JCO.2018.36.15 suppl.9034

Case 4 Clinical History

- 86 year-old male with a history of bladder cancer (TURBT and BCG)
- Multiple comorbidities
- Former, remote smoker (Quit Date-1974)
- Presented to Emergency Room after dyspnea, weakness and syncopal episode
- Large loculated pleural effusion
- Malignant pleural effusion with thoracentesis
- Mediastinal lymphadenopathy
- Bone and liver lesions

Pleural Fluid Adenocarcinoma TTF1 + Napsin A + PDL1 – TPS score 90%

DNA concentration: 16.8 ng/µl RNA concentration: 21.5 ng/µl

Clinically Significant Alterations VAF

MET c.3077_3082+9del (Tier 1A) 46%

MET Exon 14 Skipping (Tier 1A)

Available via license: <u>CC BY-NC-ND 4.0;</u> Santarpia M, Massafra M, Gebbia V, D'Aquino A, Garipoli C, Altavilla G, Rosell R. A narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations. Transl Lung Cancer Res. 2021 Mar;10(3):1536-1556. doi: 10.21037/tlcr-20-1113. PMID: 33889528;

MET Exon 14 Skipping Variant

Drugs Associated with Sensitivity for Patient's Tumor Type, Based on Genomic Analysis

Drug	Response to Drug	Alteration Detected	Condition	Other Relevant Information	Line of Therapy	Source
Capmatinib	Primary sensitivity	MET Exon 14 Skipping	Non-Small Cell Lung Cancer	Indicated for adult patients with metastatic non-small cell lung cancer with a mutation that leads to MET exon 14 skipping.	Metastatic	FDA, NCCN
Crizotinib	Primary sensitivity	MET Exon 14 Skipping	Non-Small Cell Lung Cancer	Recommended by NCCN under Category 2A for patients with high-level MET amplification or MET exon 14 skipping mutations.	Metastatic	NCCN
Tepotinib	Primary sensitivity	MET Exon 14 Skipping	Non-Small Cell Lung Cancer	Indicated for metastatic NSCLC harboring MET exon 14 skipping alterations.	Metastatic	FDA, NCCN

- Started on Capmatinib 400 mg BID (oral)
- Reduction of most lesions within two months
- Tolerating treatment well

Other Cases (non-NSCLC)

Case 5

- Male diagnosed with nodular melanoma of left neck in mid 60s
- Negative staging and sentinel node
- 5 years later presented with left shoulder and groin pain
- Widespread metastatic disease
- Left lung mass biopsied with metastatic melanoma
- Started Immune Checkpoint Inhibitors but developed hepatitis – treated with steroids

<u>Left Lung Biopsy</u> Poorly differentiated neoplasm, c/w melanoma SOX10 + S100 +

BRAF non-V600 variants

Clinically Significant Alterations BRAF p.G469E (VAF: 18.1%) (Exon 11)

BRAF and MEK inhibition currently not recommended for non-V600E variants in exons 11 or 15 per NCCN 2.2024

Śmiech M, Leszczyński P, Kono H, Wardell C, Taniguchi H. Emerging *BRAF* Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes (Basel). 2020 Nov 12;11(11):1342. doi: 10.3390/genes11111342. PMID: 33198372; PMCID: PMC7697059. Licensed by Creative Commons version 4.0.

Case 6

- 71 year-old female, former smoker 30+ years
- Questionable history of cutaneous melanoma
- Incidental 5 cm right lung mass identified on a coronary calcium score CT test
- FNA and biopsy were performed at outside institution

- Outside cytology FNA
- Right Upper Lobe Lung Mass
- Poorly Differentiated Carcinoma
- Multiple Negative Stains
- NUT IHC Positive

Continued Course

- Follow up care at Harvard with a NUT-carcinoma specialist
- Neoadjuvant chemotherapy and immunotherapy and resection
- Adjuvant chemotherapy
- Developed colitis
- Interval CT scan revealed a chest wall/breast mass
- Biopsy performed

Metastatic Breast Lesion: FISH Positive NUTM1::BRD4 fusion

NGS: STPP Panel NM: Negative

Harvard (previous specimen): Intergenic rearrangement BRD4 exon 10 (Tier 4)

Take Home: No test is 100% sensitive and multimodality testing may be needed in certain cases

Case 7

- 67 year old never smoker male presenting with 2 weeks of nonproductive cough
- Bilateral lung masses on CT scanning and hilar lymphadenopathy
- Normal CXR two years prior
- Renal mass also identified
- Biopsy performed by IR of right lung nodule
- Poorly differentiated carcinoma with necrosis (PDL1 >80%)
 - Possible kidney (PAX8+), but necrosis interfering
- Started ipilimumab + nivolumab, then single nivolumab with initial response then some progression

Biopsy of Axillary Lymph Node for Hybrid capture- based NGS (Large Panel-POP300)

Gene	Alteration	Classification	VAF
ATM	c 7882dupA p.12628fs	Tier 2C - Likely Pathogenic	28%
BRCAI	c.3049G>T;p.E1017*	Tier 2G - Pathogenic	25%
FBXW7	c.1480_1481insA;p.L494fs	Tier 2C - Likely Pathogenic	25%
MET	c.3328G>A;p.V1110	Tier 2C - Pathogenic	42%
TERT	c146C>T	Tier 2C - Pathogenic	23%
Copy Numbe	r Variations:		
Gene	Alteration	Classification	
None			
Structural Va	ariations:		
Genes	Alteration	Classification	
None			
Biomarker S	ummary:		
Microsatellite	Stable (MSS) (2.61 PercentageUn	stableSites) TMB-Low (5.5 muts/Mb)	

- Added cabozantinib (broad TKI) with nivolumab with treatment response
- Inherited Testing negative

Conclusions

- Semiconductor Sequencing using Amplicon-Based NGS is useful for small specimens
- Allows for actionable results in a timely manner (our data)
 - 99% signed out \leq 8 business days from specimen receipt
 - 80% signed out \leq 8 business days from order
 - Can rapidly screen newly diagnosed cancers as per recommendations
- Prevents additional procedures or liquid biopsy
- Our institution has recently implemented up-front panel testing on all newly diagnosed NSCLC by amplicon-based sequencing

ATTACK OF STREET, STRE

Nebraska Medicine

1.0