

Management of Venous Thromboembolism

Jason R. Cook, MD PhD FACS RPVI Assistant Professor Division of Vascular Surgery Department of Surgery

Disclosures

None

What is Venous Thromboembolism (VTE)

Definition: A condition in which a blood clot forms in a vein and may travel to the lungs leading to a pulmonary embolism:

Includes:

- Deep vein thrombosis (DVT): Clot forms in the deep vein, commonly in the legs
- Pulmonary embolism: Clot that travels to the lungs (pulmonary artery tree)

Goals

- Review risk factors for VTE
- Identify patients at high risk for post-thrombotic syndrome (PTS) and treatment options to prevent chronic venous disease
- Describe workup of patients with venous disease
- Review treatment options for patients with VTE

Big Picture

- Incidence of VTE is 1.6 per 1000
- Studies suggest 20-50% of patients with DVT develop post thrombotic syndrome (PTS) of which up to 10% can result in wounds

Pathophysiology

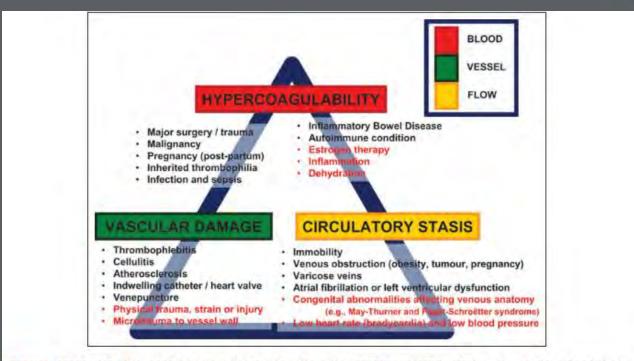
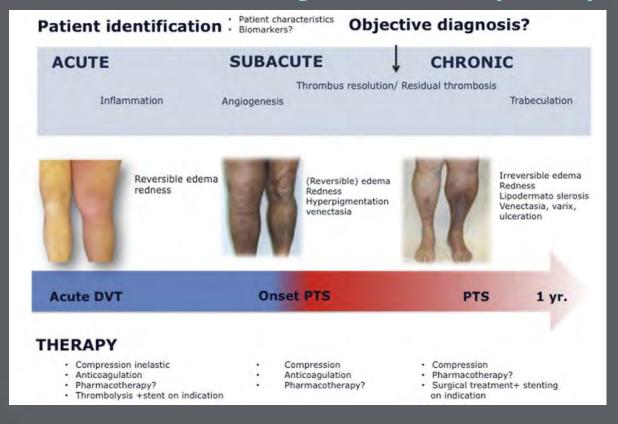


Figure. Virchow's triad of risk factors for venous thromboembolism (VTE). Factors in red are associated with heightened risk in marathon athletes. Note that athlete-specific factors are present in all 3 sections of the triad; a cumulative risk of VTE in certain individuals is entirely possible.



The post thrombotic syndrome: Ignore it and it will come back to bite you

Arina J. ten Cate-Hoek a,*, Peter K. Henke b, Thomas W. Wakefield b

Post Thrombotic Syndrome (PTS)

a Cardiovascular Center and Laboratory for Clinical Thrombosis and Hemostasis, Maastricht University Medical Center, Maastricht, the Netherlands

b Section of Vascular Surgery and the Jobst Vascular Research Laboratory, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA

Post-Thrombotic Syndrome (PTS)

- No "gold" standard
- Clinical definition based on The Villalta scale
- Presents within a few months (2-4) of DVT
- 20-50% of patients with LE DVTs will develop PTS with 5-10% of them developing severe PTS

Table 1. Villalta PTS scale

Assessment of:

- 5 symptoms (pain, cramps, heaviness, pruritus, paresthesia) by patient self-report
- 6 signs (edema, skin induration, hyperpigmentation, venous ectasia, redness, pain during calf compression) by clinician assessment

Severity of each symptom and sign is rated as 0 (absent), 1 (mild), 2 (moderate) or 3 (severe). In addition, ulcer is noted as present or absent.

Points are summed to yield the total Villalta score:

0-4:

5-9:

10-14:

≥15, or presence of ulcer

No PTS

Mild PTS

Moderate PTS

Severe PTS

PMID: 27913509

Risk factors of PTS

- Proximal DVT (iliac or common femoral) [2-3x risk of PTS]
- Previous ipsilateral proximal DVT
- History of ipsilateral venous insufficiency [2x risk of PTS]
- Obesity (BMI > 30) [2x risk of PTS]

PMID: 27913509

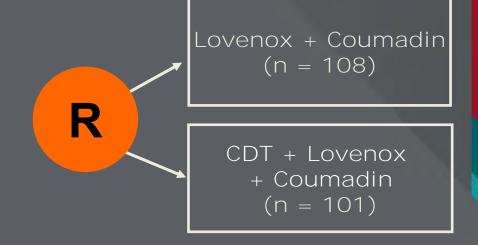
Describe workup of patients with venous disease

- Evaluation (H&P) with Exam
 - Conservative therapy (compression & elevation)
- Imaging (duplex, venography with IVUS, CTV, MRV)
 - Outflow obstruction
 - Reflux
 - Deep
 - Superficial
 - Combined
 - Perforator

	al Classification (C)		gic Classification (E)
C _o	No visible/palpable signs of venous disease	E _p	Congenital Primary
0,	Telangiectasias or reticular veins	E _s	Secondary (postthrombotic)
C_2	Varicose veins	E _n	No venous etiology identified
C_3	Edema	Anato	mic Classification (A)
3 _{4a}	Pigmentation and/or	A _s	Superficial veins
	eczema	A _D	Perforator veins
C _{4b}	Lipodermatosclerosis and/or atrophy	A_d	Deep veins
5	Healed venous ulcer	A _n	No venous location identified
) 6	Open venous ulcer	Patho	physiologic Classification (P)
		P,	Reflux
	Subscript	Po	Obstruction
A	Asymptomatic	$P_{r,o}$	Reflux and obstruction
6	Symptomatic	P _n	No venous pathophysiology identifiable

Who to treat?

CaVenT Trial: Study Design


• Eligibility:

Age: 18-75 years

First-time acute iliofemoral DVT

Symptom duration up to 21 days

No increased risk of bleeding

- Primary outcomes:
 - Frequency of PTS at 24 months, assessed by the Villalta score
 - Iliofemoral patency after 6 months

Outcomes: Additional CDT versus Standard Therapy

	Additional CDT (n = 90)			andard therapy only (n = 99)	
Outcome	n	% (95% CI)	n	% (95% CI)	<i>p</i> -value
PTS after 6 mo	27	30.3 (21.8-40.5)	32	32.2 (23.9-42.1)	0.77
PTS after 24 mo	37	41.1 (31.5-51.4)	55	55.6 (45.7-65.0)	0.047
Iliofemoral patency after 6 mo	58	65.9 (55.5-75.0)	45	47.4 (37.6-57.3)	0.012

- PTS is defined as a Villalta score ≥5.
- p-values stated are from an unadjusted Chi-square test.
- Absolute risk reduction of long-term endpoint PTS at 24 months of follow-up in CDT versus standard therapy: 14.4% (95% CI 4-502).

Who to treat?

- Proximal DVT (iliac to common femoral vein)
- Recurrent ipsilateral DVT
- Obese patients

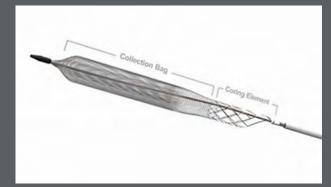
Relative risk reduction of 23% at 5 yrs for PTS (71% vs. 43%)

DVT Treatment

	Risk of Bleeding	Rate of Thrombus Clearance	ICU stay	Length of Stay post-op
Systemic Heparin	Low	Low	No	N/A
Percutaneous Mechanical Thrombectomy	Low	Rapid	No	1-2
Catheter Directed Thrombolysis (CDT)	Moderate (17 of 150 pts w/ bleeding in Seattle II study, 11%)	Moderate	Yes (~2 days)	1-2
Systemic TPA	High	Rapid	Yes (~ 1 day)	1-2

DVT Treatment

	Risk of Bleeding	Rate of Thrombus Clearance	ICU stay	Length of Stay post-op
Systemic Heparin	Low	Low	No	N/A
Percutaneous Mechanical Thrombectomy	Low	Rapid	No	1-2
Catheter Directed Thrombolysis (CDT)	Moderate (17 of 150 pts w/ bleeding in Seattle II study, 11%)	Moderate	Yes (~2 days)	1-2
Systemic TPA	High	Rapid	Yes (~ 1 day)	1-2


Percutaneous Mechanical Thrombectomy

Penumbra

- Aspiration catheter
- Separator wire to fragment clot

Inari

- Mechanical thrombectomy with coring element
- Aspiration sheath

Angiojet

- Aspiration catheter with TPA spray

Case example

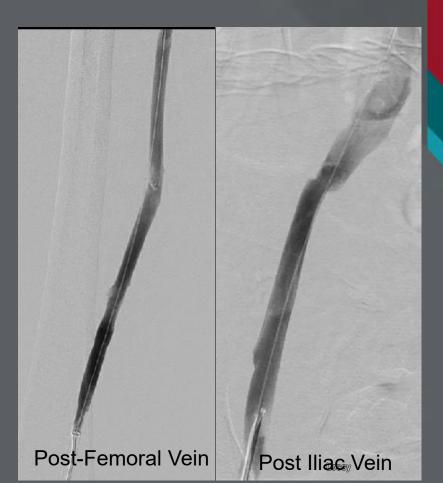
 42 yo F w/ LLE swelling over 2 weeks with LE venous duplex with common femoral to ankle DVT. CT a/p venous phase with left common and external iliac vein DVT

Benefits:

- Minimal sedation needed
- Large clot (acute & chronic) evacuation
- Can stent (for iliac vein compression)
- Minimal blood loss (< 100cc)
- Single session treatment

Risks:

- Popliteal vein access (prone)
- Large bore venous access



Procedure

- Awake with light sedation in the prone position
- Case duration ~70 mins, EBL 50cc

Case example

 51 yo M w/ RLE swelling over 12 hours with decreased motor and sensation to the right foot.

- BLE venous duplex with right iliac to ankle DVT
 - Diagnosis?

Phlegasia Cerulea Dolens

Procedure

- Awake, minimal sedation, prone position
- Case duration 90 mins, EBL 50cc

Post-Femoral Venogram

Post Stenting Iliac Venogram

Post Stenting Femoral Venogram

Pre-Op

POD1

IVC Occlusions

- 32 yo F w/ abd pain 3 weeks s/p ureteroscopy, laser lithotripsy, and stent placement for a renal stone. Found on CT to have an IVC thrombus (Panels A and B). Treated with heparin x 48 hours with worsening BLE swelling.
- Taken for percutaneous mechanical thrombectomy (panel C)
- CT venogram 30d post-op with a patent IVC, bilateral iliac, and femoral veins (Fig 1d and e, blue arrows).
- Outpatient testing revealed a factor V Leiden mutation.

DVT – Treatment Algorithm

- Positive lower extremity venous duplex with common femoral DVT
- CT abdomen/pelvis with contrast (venous phase) to identify evidence of IVC, common or external iliac vein DVT
- Currently offering treatment to patients with IVC, iliac vein, and/or common femoral vein DVT

Proximal Extension of DVT

62 yo M w/ 3d h/o RLE swelling and CTA w/ subsegmental bilateral PEs. No h/o prior DVTs. Sat 97% on RA.

	Right					
Segment	Spont	Ph	Aug	Compr	Thromb	SI
CFV	None	None	Absent	None	Acute	Occluded
DFV	None	None	Absent	Partial	Acute	Partially Occluding
FV Prox	Decreased	Decreased	Decreased	Partial	Acute	Partially Occluding
FV Mid	Decreased	Decreased	Decreased	Partial	Acute	Partially Occluding
FV Dist	Decreased	Decreased	Decreased	Partial	Acute	Partially Occluding
POPV	Decreased	Decreased	Decreased	Partial	Acute	Partially Occluding
Gastrocnemius	None	None	Absent	Partial	Acute	Partially Occluding
PTV	None	None	Absent	None	Acute	Occluded
PERV						Not Visualized
GSV Prox	None	None	Absent	None	Acute	Occluded

Sagment	Left					
Segment	Spont	Ph	Aug	Compr	Thromb	SI
CFV	Normal	Phasic	Normal	Complete	None	Normal (Patent)

Procedure

- Awake, MAC sedation, supine position
- Case duration 126 mins, EBL 150cc

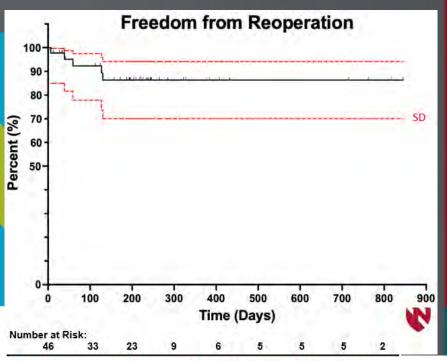
Post Thrombectomy Pre-Iliac Venogram Temp IVC Filter

Contemporary Iliac DVT invasive management: Lower Post-Thrombotic Syndrome Incidence Than Ever Before.

MVSS 2024 - 9/12/24

Ali H. Hakim, M.D., Prateek Sharma, M.D., Yuqian Tian, M.D., Jason R. Cook, M.D., Ph.D.

University of Nebraska Medical Center



Nebraska Medicine

Follow up data - Ultrasound

	Preop N=46	1 month N= 42	6 months N=31
IVC Patent Occluded	42 (91%) 4 (9%)	40 (95%) 2 (5%)	31 (100%) *
Iliac Vein Patent Occluded	0 (0%) 46 (100%)	40 (95%) 2 (5%)	28 (91%) 3 (10%)
Common Femoral Patent Occluded	7 (16%) 39 (84%)	40 (95%) 2 (5%)	30 (97%) 1 (3%)

^{*:} Previously occluded IVC at 1 month not surveyed with US at 6 months; 1 patient with IVC atresia, 1 patient with chronically occluded IVC filter

Assessment at Last Follow-up

Median Follow-up (Days)	221 (140.5,303.5)	NNI.		
PTS Villalta >4	3 (6.5%)			
Mild Moderate	4 (9%) 1 (2%)			
None	41 (89%)			
Pain	P. C. W. C. A. C. A.			
Moderate	7 (15%) 6 (13%)			
Mild				
Edema None	33 (72%)			

Thank you

Adverse Events (AEs)

AEs	Additional CDT (n = 101)	Standard treatment (n = 108)
Bleeding complications	20	О
Major bleeding complications	3	0
Clinically relevant bleeding complications	5	Ο
Deaths	0	NR
Pulmonary embolisms	0	NR
Cerebral hemorrhages	0	NR
Nonbleeding complications	4	NR
Recurrent VTE at 24 mo	10	18

