Treatment of Cardiomyopathies and Genetics

Douglas Stoller, MD PhD State of the Heart: 2nd Annual Heart and Vascular Conference October 2024

Disclosures

I am on the speakers' bureau (nonbranded) for Bristol Myers Squibb. I have previously served on advisory boards for Bristol Myers Squibb.

I have previously received research support from Amgen.

Objectives

- 1. Review guideline updates in management of hypertrophic cardiomyopathy
- 2. Describe the mechanism and use of myosin inhibitor therapy in hypertrophic cardiomyopathy
- 3. Explain the basics of genetic testing and family screening and surveillance

Talk Outline

Treatment of Cardiomyopathies

- Medical therapy for Hypertrophic Cardiomyopathy
- Myosin inhibitor therapy
 - Obstructive HCM
 - Non-obstructive HCM
- Horizon non-invasive therapy for HCM

Genetics of Cardiomyopathies

o Explain the basics of genetic testing and family screening/surveillance

Management of Hypertrophic Cardiomyopathy

Obstructive vs Nonobstructive

LV outflow tract (LVOT) obstruction = pressure difference between LV and aorta due to myocardial obstruction (not a fixed obstruction)

Symptom management overview

OBSTRUCTIVE

NON-OBSTRUCTIVE

Recommendations for Pharmacological Management of Symptomatic Patients With Obstructive HCM

Referenced studies that support the recommendations are summarized in the Colore Commendations.

COR	LOE	Recommendations			
1	B-NR	 In patients with obstructive HCM and symptoms* attributable to LVOTO, nonvasodilating beta blockers, titrated to effectiveness or maximally tolerated doses, are recommended.¹⁻³ 			
1	B-NR†	 In patients with obstructive HCM and symptoms* attributable to LVOTO, for whom beta blockers are ineffective or not tolerated substitution with 			
	C-LD‡	ineffective or not tolerated, substitution with nondihydropyridine calcium channel blockers (eg, verapamil,† diltiazem‡) is recommended.4-6			
1	B-R	3. For patients with obstructive HCM who have persistent symptoms* attributable to LVOTO despite beta blockers or nondihydropyridine calcium channel blockers, adding a myosin inhibitor (adult patients only), or disopyramide (in combination with an atrioventricular nodal blocking agent), or SRT performed at experienced centers,§ is recommended. ⁷⁻¹⁴			
1	C-LD	4. For patients with obstructive HCM and acute hypotension who do not respond to fluid administration, intravenous phenylephrine (or other vasoconstrictors without inotropic activity), alone or in combination with beta-blocking drugs, is recommended. ¹⁵			

HCM 2024 Guideline update

2Ь	C-EO	 For patients with obstructive HCM and persistent dyspnea with clinical evidence of volume overload and high left-sided filling pressures despite other HCM GDMT, cautious use of low-dose oral diuretics may be considered.
2Ь	C-EO	 For patients with obstructive HCM, discontinuation of vasodilators (eg, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel blockers) or digoxin may be reasonable because these agents can worsen symptoms caused by dynamic outflow tract obstruction.
3: arm	C-LD	 For patients with obstructive HCM and severe dys- pnea at rest, hypotension, very high resting gradients (eg, >100 mm Hg), as well as all children <6 weeks of age, verapamil is potentially harmful.⁴¹⁶

Ommen et al. HCM Guidelines 2024

HCM 2024 Guideline update

Ommen et al. HCM Guidelines 2024

Metoprolol XL in obstructive HCM

Obstructive HCM LVOT >30 rest or >50 stress NYHA II+

N=30

Metoprolol 50-150 mg daily Treat x14 days

Metoprolol XL in obstructive HCM

Metoprolol XL x14 days →
1. Significant LVOT grad reduction
2. Improved NYHA class

Dybro et al. JACC 2021

Myosin inhibitors

Ostrominski et al. JACC-HF 2023

Mavacamten

- Reversible inhibitor of cardiac specific myosin
- FDA approved for treatment of obstructive HCM
- Published clinical trials of mavacamten
 - Obstructive HCM (EXPLORER-HCM (phase 3), Olivotto et al. Lancet 2020)
 - Severe obstructive HCM (VALOR-HCM (phase 3), Desai et al. JACC 2022)
 - Nonobstructive HCM (MAVERICK-HCM (phase 2), Ho et al. JACC 2020)
- Ongoing clinical trials of mavacamten
 - Nonobstructive HCM (ODYSSEY-HCM (phase 3)), closed to enrollment
 - HFpEF (EMBARK-HFpEF (phase 2a)), closed to enrollment

Aficamten

Reversible inhibitor of cardiac specific myosin

- Published clinical trials of aficamten
 - Obstructive HCM (SEQUOIA-HCM (phase 3), Olivotto et al. *NEJM* 2024)
 - Nonobstructive HCM (FOREST-HCM cohort 4 (phase 2), Masri et al. JCF 2024)
- Ongoing clinical trials of aficamten
 - Obstructive HCM, aficamten vs metoprolol (MAPLE-HCM (phase 3)), recruiting
 - Nonobstructive HCM (ACACIA-HCM, (phase 3)), recruiting

EXPLORER-HCM trial

Obstructive HCM
LVOT grad >50, NYHA II-III
Continued on prior medical monotherapy (BB or CCB). No disopyramide.
N=251

Primary Endpoint:

1.5+ mL/kg/min increase in peak VO2
AND NYHA class reduction
OR
3.0+ mL/kg/min increase in peak VO2

Treated for 30 weeks

	Mavacamten (n=123)	Control (n=128)	
Primary endpoint	45/123 (37%)	22/128 (17%)	p=0.0005
Peak VO2 1.5+ml/kg/min +NYHA improvement	41/123 (33%)	18/128 (14%)	
Peak VO2 3.0 ml/kg/min	29/123 (24%)	14/128 (11%)	

EXPLORER-HCM trial

Obstructive HCM LVOT grad >50, NYHA II-III N=251

Impact on NYHA class change:

EXPLORER-HCM trial

Obstructive HCM LVOT grad >50, NYHA II-III N=251

Olivotto et al. Lancet 2020

EXPLORER-HCM trial safety events

Obstructive HCM LVOT grad >50, NYHA II-III N=251

For mavacamten:

- > 7/123 (5.7%) had EF drop requiring adjustment
- > 3/123 (2.4%) required drug stop
 > All recovered EF after washout

> Side effects >5%: syncope (27%), dizziness (6%)

Olivotto et al. Lancet 2020

SEQUOIA-HCM trial

Obstructive HCM EF 60, LVOT grad >30 rest, >50 valsalva NYHA II-III

Continued on background medical therapy

N=282

Treated for 24 weeks

Primary Endpoint:

Change in peak VO2

	Aficamten (n=142)	Control (n=140)	
Change in peak VO2	1.7 ml/kg/min	0.0 ml/kg/min	P<0.001

Maron et al. NEJM 2024

SEQUOIA-HCM trial

N. KY

Maron et al. NEJM 2024

Mavacamten and Aficamten have similar clinical impact

	Mavacamten	Aficamten
Change in VO2 (ml/kg/min)	1.4	1.7
LVOT gradient (mmHg)	-47	-48
Change in KCCQ score	13.6	11
Reduction of 1 NYHA class (%)	65	59
EF <50% (incidence)	5.7%	3.6%
	FDA approved	Quicker titration
		Fewer drug-drug interactions

Olivotto et al. Lancet 2020, Maron et al. NEJM 2024

VALOR-HCM trial

Obstructive HCM Severe sx (NYHA III/IV or II+syncope Maximal med therapy LVOT grad >50, LVEF >60 REFERRED for septal reduction therapy N=112

Primary Endpoint:

Decision to proceed with SRT or guideline eligible at week 16

	Mavacamten (n=56)	Control (n=56)	
Primary endpoint	10/56 (18%)	43/56 (77%)	P<0.001
Proceeded with SRT	2/56 (4%)	2/56 (4%)	
Guideline eligible for SRT	8/56 (14%)	39/56 (70%)	

Myosin Inhibitors – Do's and Don'ts

CONTRAINDICATED: LVEF <55%

Prescribing providers must complete REMS certification and documentation. Provide echo monitoring minimum of q3 months.

Be mindful of drug-drug interactions

HCM and NONobstructive HCM

Recommendations for Management of Patients With Nonobstructive HCM With Preserved EF Referenced studies that support the recommendations are summarized in the				
COR	LOE	Recommendations		
1	C-LD	 In patients with nonobstructive HCM with preserved EF and symptoms of exertional angina or dyspnea, beta blockers or nondihydropyridine calcium channel blockers are recommended.^{1–5} 		
2a	C-EO	 In patients with nonobstructive HCM with preserved EF, it is reasonable to add oral diuretics when exertional dyspnea persists despite the use of beta blockers or nondihydropyridine calcium channel blockers. 		

,	C-LD	 In patients with nonobstructive HCM with preserved EF, the usefulness of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in the treatment of symptoms (angina and dyspnea) is not well established.⁶
	C-LD	4. In highly selected patients with apical HCM with severe dyspnea or angina (NYHA functional class III or class IV) despite maximal medical therapy, and with preserved EF and small LV cavity size (LV end-diastolic volume <50 mL/m ² and LV stroke volume <30 mL/m ²), apical myectomy by experi- enced surgeons at comprehensive centers may be considered to reduce symptoms. ^T
	C-EO	 In asymptomatic patients with nonobstructive HCM, the benefit of beta blockers or calcium channel blockers is not well established.
,	B-R	6. For younger (eg, ≤45 years of age) patients with nonobstructive HCM due to a pathogenic or likely pathogenic cardiac sarcomere genetic variant, and a mild phenotype,* valsartan may be beneficial to slow adverse cardiac remodeling. ⁸

Ommen et al. HCM Guidelines 2024

MAVERICK-HCM trial

Mavacamten in Nonobstructive HCM N=59

EF >55% and NTproBNP >300

Treated patients exhibited a reversible drop in cardiac troponin and NT-proBNP

FOREST-HCM

Aficamten Nonobstructive HCM N=34 EF >55%

Phase 3 trials: myosin inhibitor in nonobstructive HCM

ODYSSEY-HCM	ACACIA-HCM	
Mavacamten	Aficamten	
EF >60, LVOT <50 Valsalva	, NYHA II-III, (+) biomarkers	
48 weeks	36 weeks	
Change in KCCQ Change in peak VO2	Change in KCCQ	
Ongoing, closed to enrollment	Recruiting	

Ninerafaxstat for Nonobstructive HCM

Ninerafaxstat

--Inhibits FA oxidation

--Shifts metabolism FA > glucose oxidation (less O2 per ATP unit)

--Enhances cardiac efficiency by increasing recoupling of glucose oxidation and greater energy generation.

Ninerafaxstat for Nonobstructive HCM

Nonobstructive HCM N=67 EF >50%, LVOT grad <30 Ninerafaxstat vs placebo 12 weeks Primary endpoint was safety

Secondary endpoints assessed exercise capacity, biomarkers

No impact on BNP, hs-troponin

GENETIC TESTING

Genetic testing options

Gene Panel tests

- Sequencing of genes (5-100 genes for cardiac) known to cause the disease
- Coverage and depth enriched for genes of interest (often 100x depth)
- Exome sequencing

Lower sequencing coverage and depth

Whole genome sequencing

- Sequencing of the entire genome
- Most expensive and time consuming
- Lowest sequence coverage and depth

POORLY DETECTED BY NGS

Gene duplications Insertion/Deletions

Interpreting results of genetic testing

Richards et al. Genetics in Medicine 2015

Table 1. Detection Rates and Clinical Utility of Diagnostic Genetic Testing for Selected Inherited Cardiovascular Diseases

	Major Genes or Gene Families Analyzed ^a	Detection Rate, % ^b	Utility of Genetic Testing		
Condition			Diagnostic Criterion	Effect on Proband Management	Predictive Genetic Testing
Hypertrophic cardiomyopathy	Sarcomere genes	30 to >60	NA	+ ^c	Yes
Dilated cardiomyopathy	Sarcomere and cytoskeleton genes (including <i>TTN</i>)	30-40	NA	NA	Yes
	LMNA	<5 to 10	Yes	++ ^d	Yes
Arrhythmogenic cardiomyopathy	Desmosomal genes	- 60	Yes	+	Yes
Long QT syndrome	Transmembrane ion channel genes	50-75	Yes	++	Yes
Catecholaminergic polymorphic ventricular tachycardia	RYR2, CASQ2, TRDN, and CALM1	50-55	Yes	**	Yes
Brugada syndrome	SCN5A	20-25	NA	+	Yes
Marfan syndrome	FBN1	>90	Yes	++	Yes
Loeys-Dietz syndrome	TGFBR1/2, SMAD3, and TGFB2/3	70-90	Yes	++	Yes
Familial thoracic aortic aneurysms and dissections	ACTA2, MYH11, and MYLK	20-25	NA	++	Yes
Vascular Ehlers Danlos syndrome	COL3A1	- 95	Yes	++	Yes
Familial hypercholesterolemia	LDLR, APOB, PCSK9, and LDLRAP1	60-80	Yes	++	Yes

Clinical Utility of Cardiac Genetic Testing

Cirino et al. JAMA Card 2020

How to: cascade genetic testing

Take-Home points

- Myosin inhibitors significantly reduce symptom burden in obstructive HCM. Ongoing clinical monitoring is required while on therapy.
- Clinical trials investigating myosin inhibitor therapy in nonobstructive HCM are ongoing.
- Expect clinical trials assessing benefit of myosin inhibitors in HFpEF.
- Time will tell if improved cardiac metabolism is a viable therapeutic target.
- Genetic testing is a valuable tool for family screening.

Mavacamten drug-drug interactions

• Metabolized by CYP2C19 (74%), CYP3A4 (18%) and CYP2C9.

	Inhibitor (↑exposure)	Inducer (↓exposure)		
2C19	Contraindicated for moderate or strong Down-adjust dose for weak			
	Mod/Strong: PPIs Weak: omeprazole	Mod/Strong: rifampin Weak:		
3A4	Contraindicated for strong Down-adjust dose for moderate			
	Strong: ketoconazole, HIV meds Mod: verapamil, diltiazem, grapefruit juice	Strong: rifampin, phenytoin Mod: St Johns wort		

Longterm followup for mavacamten

Extension of EXPLORER-HCM trial Open label N=231 Median followup 3.2 yrs Mavacamten 5 mg > titration

Sustained clinical improvement

20/231 (8.7%) had incident EF<50% at some point

Garcia-Pavia et al. EHJ 2024

SEQUOIA-HCM

Obstructive HCM EF 60 LVOTg >30 rest LVOTg >50 Valsalva NYHA II-III

Maron et al. NEJM 2024

Mavacamten monitoring

