Normal tissue sparing via proton FLASH, SFRT and beyond

Hao Gao, PhD

Associate Professor & Director of Physics Research Department of Radiation Oncology

THE UNIVERSITY OF KANSAS Cancer Center

Cancer Center Designated by th National Cancer Institute

Disclosure

- Research collaborations with IBA and RaySearch
- FLASH research funding from IBA

FLASH enhances normal-tissue sparing

[Bourhis Radiother Oncol 2019]

Proton FLASH clinical trials

- FLASH v.s. VMAT
 - Does FLASH maintain the benefit of protons for OAR sparing?
- FLASH v.s. IMPT
 - Does FLASH improve the OAR sparing? (How to quantify? How much?)

ConformalFLASH planning via RayStation

IBA 2024 FLASH Treatment Planning Contest Award (1st Place)

IMPT plan Multi-layer planning, with range shifter and aperture block

The University of Kansas

CANCER CENTER

Clinical cases: reHN

FLASH vs IMPT vs VMAT

Multi-field: 3 re-irradiation HN 2 fields, SFO (8 Gy / field), ipsilateral

8 Gy @ 95% PTV / fx

HN1: proton benefits

0

4%

Structure	Quantity	FLASH	IMPT	VMAT
L Parotid	D 1%	0	0	21%
	D mean	0	0	14%
Spinal Cord	D 1%	13%	0	33%
	D mean	1%	0	3%
Lips	D 1%	0	0	14%

0

D mean

Protons spare dose on contralateral OARs

٠

 In terms of physical dose conformality, FLASH is degraded, compared to IMPT (larger penumbras)

FLASH dose rate/effective dose via in-house TPS codes

• **Pencil-beam dose rate** (PBDR): [Folkerts Med Phys 2020] Depends on spot delivery pattern,

 D_i : Total dose at voxel *i* d_{th} : Dose threshold (5% of prescription) t^* : Delivery time between thresholds

$$PBDR_i = \frac{D_i - 2d_{th}}{t^*}$$

• Effective dose: [Gao Med Phys 2022]

Flash regime is reached above dose and dose rate threshold,

$$\begin{bmatrix} d_0: 5 \text{ Gy} \\ d_{r0}: 40 \text{ Gy/s (PBDR)} \end{bmatrix} \quad D_{\text{eff}} = \begin{cases} 0.7\text{D}, & D > d_0 \cap D_r > d_{r0} \\ D, & \text{CTV, or below thrsld.} \end{cases}$$

I_{nozzle} = 500 nA @ 226 MeV $V_{scan} = 1 \text{ cm} / \text{ms}$ $t_{spot}[ms] = 0.044 \cdot MU$ Total dose at voxel *i* 800 600 Dose [cGy] 00 +* 200 75 125 100 1500 175 200 25 t [ms]

Dose rate optimization

• After filtering, spots are mostly left on the edges,

Min/max spot weight: 30/190 MU

• Scanning pattern is optimized to increase PBDR via in-house codes

Dose rate optimization

- Scanning pattern can increase PBDR on OARs and PTV
- Not all OARs will be at Flash regime

 Flash regime is achieved close to the PTV

THE UNIVERSITY OF KANSAS Cancer Center

HN1

Physical dose (RBE)

- OARs that are within the proton beam path receive higher doses than with VMAT
- FLASH conformity is poorer

Structure	Quantity	FLASH IMPT		VMAT	
PTV	CI	0.62	0.73	0.78	
	D 1%	105%	104%	104%	
CTV+1cm	V 80%	96%	77%	62%	
R Cochlea	D 1%	73%	44%	37%	
	D mean	50%	25%	15%	
Carotid	D 10%	98%	97%	100%	
	D mean	82%	72%	50%	
R Parotid	D 1%	62%	44%	56%	
	D mean	16%	8%	17%	

FLASH

IMPT

······ VMAT

40 60 80 Dose [%]

20

100 11

THE UNIVERSITY OF KANSAS Cancer Center

HN1

٠

105% FLASH 100% 95% 50%

- Effective dose: correction factor on Flash region
- OAR high doses are reduced, but mean values are still higher than VMAT

Structure	Quantity	FLASH	IMPT	VMAT
СТV	CI	0.71	0.37	0.42
	D 1%	105%	104%	104%
CTV+1cm	V 80%	25%	77%	62%
R Cochlea	D 1%	55%	44%	37%
	D mean	47%	25%	15%
Carotid	D 10%	72%	97%	100%
	D mean	60%	72%	50%
R Parotid	D 1%	53%	44%	56%
	D mean	15%	8%	17%

FLASH

IMPT

..... VMAT

Conclusions

- Compared to VMAT, FLASH maintains the proton benefit for normal tissue sparing (e.g., contralateral OARs in reHN)
- Compared to IMPT, FLASH has degraded plan quality in terms of physical dose
- FLASH potentially improves the high-dose sparing (e.g., CTV1cm in terms of FLASH effective dose)
 - Scanning pattern can be optimized to improve PBDR

FLASH research

- Dose rate optimization
- FLASH effective dose (FED) optimization
- One-step ConformalFLASH optimization
 - Joint optimization of spot weights and CEF parameters
- Proteus®ONE based FLASH biology studies
- FLASH-SFRT

Simultaneous Dose and Dose Rate Optimization (SDDRO)

PTCOG 2021 Michael Goitein best abstract award in Physics

One-step ConformalFLASH optimization

Hedgehog shape is part of optimization Preliminary Test: Using 226 MeV to achieve a 4 cm SOBP

ΓHE	UN	IVER	SIT	Y	OF	Kansas
CANCER CENTER						

SFRT: Clinical Use

- GRID [Mohiuddin Cancer 1990]
 - Head and neck cancer [Huhn TCRT 2006, Peñagarícano IJROBP 2010, Choi Cureus 2019]
 - Sarcoma [Mohiuddin IJROBP 2009, Kaiser J Radiat Oncol 2013, Snider Radiat Res 2020]
 - Melanoma [Kudrimoti IJROBP 2002]
 - Proton GRID [Gao MP 2018, Mohiuddin Brit. J. Radiol. 2020]
- LATTICE [Wu Cureus 2010]
 - Cervical cancer [Amendola Cureus 2010, Suarez Cureus 2015, Amendola Radiat Res 2020]
 - Lung cancer [Amendola ctRO 2018, Amendola Cureus 2019]

SFRT program at KUMC

- pMBRT
- LATTICE/GRID
 - Proton/photon
 - Clinical trials
 - Immunotherapy, targeted therapy
- Treatment planning
 - PVDR optimization
 - Lattice position optimization
 - Scissor beam based proton GRID
 - Proton ARC based proton LATTICE

pMBRT

- Compared to GRID/LATTICE
 - higher PVDR and very high therapeutic index,
 - beyond the simple difference in beam size and should be due to different biological mechanisms [Prezado22]
- Compared to microbeam
 - can reach deep-seated tumors
 - deliverable on clinical machines
- pMBRT is a synergy of proton and minibeam
 - proton Bragg peaks for sparing OAR
 - therapeutic index further enhanced when combined with proton RT, which is likely due to immune activation [Potez19, Tinganelli20]

Our recent progress

- First clinical prototype
 - System development and validation
 - RayStation TPS
 - Animal experiment setup
- pMBRT-specific treatment planning methods
 - Feasibility of PVDR in depth
 - Joint optimization of PVDR and dose objectives
 - Adaptive dose calculation
 - Multi-collimator optimization

IBA Proteus[®]ONE based pMBRT system

THE UNIVERSITY OF KANSAS CANCER CENTER

pMBRT aperture

Stability Reproducibility Flexibility

THE UNIVERSITY OF KANSAS Cancer Center

PVDR validation

A: Film measurement at 150MeV: film stacked in solid water and gantry at 90 degrees. **B**: PVDR at various depths: film measurement versus MC simulation for D_{ctc} =3mm. **C**: Dose profile at 6cm depth with D_{ctc} =3mm, 5mm, and 7mm, of PVDR=2, 7, and 12 respectively via MC simulations.

THE UNIVERSITY OF KANSAS Cancer Center

RayStation pMBRT TPS commissioning

Film Stacked in

solid waters

Towards clinical pMBRT

- Clinical pMBRT
 - Uniform target dose; PVDR in normal tissues
 - Need multi-field for target uniformity and OAR sparing
- How to deliver pMBRT with sufficient PVDR in patients?
 - One collimator does not work for all
 - Patient-specific collimator is costly
 - Our solution: multi-collimator (MC) planning and delivery

MC-pMBRT

A: pMBRT with small D_{ctc} has shallow depth of high PDVR (d_{PVDR}) for OAR sparing, but high conformity index (CI) for target coverage. **B**: pMBRT with large D_{ctc} has deep d_{PVDR} , but low CI. **C**: MCO optimizes PVDR and target coverage, via general-purpose collimators. The University of Kansas

MC v.s. SC

The University of Kansas Cancer Center

MC v.s. SC

A-D: dose map for 3, 5, 7mm and mixed D_{ctc} 's respectively. **E**: BEV 2D dose slices. **F**: BEV 1D dose profiles. **G**: Plan parameters, including conformity index (CI), mean dose D_i of 2D slice (**E**) at angle *i* and $PVDR_d$ at depth *d*.

Joint dose and PVDR optimization (JDPO)

A: Conventional SFRT treatment planning (CONV) optimizes only dose objective. **B**: New SFRT treatment planning (e.g., our TVL1 method [Zhang2023]) optimizes both dose and PVDR objectives. The comparison of dose profiles at 1 and 2 shows that while PVDR is minimal via CONV, PVDR is substantially increased via TVL1 with lower valley dose.

THE UNIVERSITY OF KANSAS Cancer Center

pMBRT program at KUMC

- Goal
 - Clinical pMBRT prototype
 - Pilot patient treatment
- Progress
 - pMBRT system with IGRT and RayStation TPS
 - pMBRT-specific treatment planning methods
 - Joint optimization of PVDR and dose objectives
 - Multi-collimator multi-field optimization
 - Adaptive dose calculation and treatment planning
 - Animal experiments

THE UNIVERSITY OF KANSAS Cancer Center

Motivation for FLASH+SFRT

NCI Comprehensive Gancer Center

SFRT

- Proton GRID via scissor beam (SB)
 - No collimator

- Proton minibeam radiation therapy
 - Multi-slit collimator
 - 2D planar minibeam dose
 - *s*=0.7mm, ctc=3mm
 - γ =30% at 6cm depth
 - Slightly reduced PVDR

Prostate: GRID + FLASH

Spatially fractionated dose in shallow-to-intermediate depth

THE UNIVERSITY OF KANSAS Cancer Center

Prostate: GRID + FLASH

Reduce effective dose in OARs

36

Lung: Minibeam + FLASH

Lung: Minibeam + FLASH

Structure	Quantity	CONV	FLASH (d/d-eff)	MB	MB-FLASH (d/d-eff)
СТV	CI	0.83	0.73/0.99	0.79	0.70/ <mark>0.98</mark>
CTV1cm	V 80%	41.9	50.4/3.3	44.2	60.1 <mark>/6.7</mark>
	D 5%	41.5	43.6/31.4	41.8	43.0/ <mark>32.6</mark>
Spinal Cord	D 10%	19.5	20.8/16.2	19.8	21.9/17.8
	D mean (Gy)	3.2	3.4/2.7	3.2	3.6/ <mark>2.9</mark>
Small Bowel	D 10%	7.8	8.2/7.0	8.4	8.8/7.0
	D mean (Gy)	2.9	3.1/2.6	3.0	3.2/ <mark>2.7</mark>
	angle	CONV	FLASH (d/d-eff)	MB	MB-FLASH (d/d-eff)
PVDR	0 °	1.3	1.4	2.2	2.2
	120 °	1.1	1.2	3.3	6.1
	240 °	1.1	1.1	3.4	6.1

The University of Kansas CANCER CENTER

Acknowledgment

- Team: Biology, physics, and clinical expertise
 - Collaborators: IBA, RaySearch
- Funding
 - KUMC recruitment award
 - NIH: R37CA250921, R01CA261964
 - **IBA**
- Awards
 - 2021 PTCOG Michael Goitein Best Abstract Award in Physics
 - 2022 ASTRO Basic/Translational Science Award
 - 2023 PTCOG-NA The Best Abstract Award in Physics
 - 2023 ASTRO Basic/Translational Science Award
 - 2024 IBA ConformalFLASH Treatment Planning Contest Winner
- Research
 - Imaging (diagnostic, on-board)
 - Therapy (treatment planning, multi-modality RT)
 - Particle (proton, multi-ion)
 - Data (safety/quality, PRO)
 - Multidisciplinary (FLASH, SFRT)

