Targeting the Core: Yttrium-90 Radioembolization in Hepatocellular Carcinoma

Joseph McBride, MD

Disclosures

• Consultant, Integer Corporation

Background

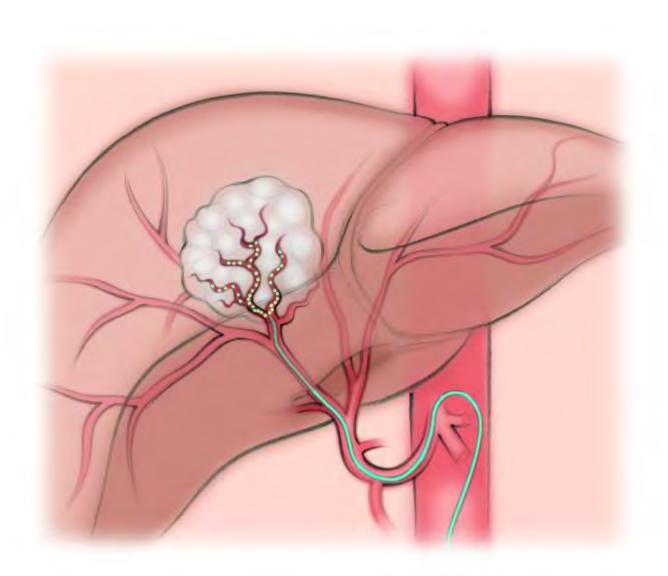
- HCC Epidemiology
 - Global incidence: 6th most common cancer
 - 4th leading cause of cancer-related death
 - Major risk factors: Hepatitis B, Hepatitis C, alcohol abuse, NAFLD
- Current HCC Treatment Landscape
 - Early stage: Resection, transplantation, ablation
 - Intermediate stage: TACE (Chemoembolization), Y90 (Radioembolization)
 - Advanced stage: Systemic therapy (e.g., sorafenib, immunotherapy)

Yttrium-90 Radioembolization: Mechanism of Action

- What is Y90?
 - Beta-emitting radioisotope
 - Half-life: 64.1 hours
 - Tissue penetration: 2.5 mm average, 11 mm maximum
- How Y90 Works
 - Delivery via hepatic arterial circulation
 - Preferential uptake by tumor vasculature
 - Local high-dose radiation with minimal systemic effects

Patient Selection and Preprocedural Evaluation

- Ideal Candidates for Y90
 - Unresectable HCC
 - Good liver function (Child-Pugh A or B7)
 - ECOG performance status 0-2
 - No extrahepatic disease
- Contraindications
 - Excessive tumor burden with limited healthy liver
 - Severe liver dysfunction
 - Significant extrahepatic disease
 - Untreatable arteriovenous shunting



Procedure Overview

Y90 Radioembolization Procedure - Two-Step Process

- Mapping Angiogram (Rehearsal)
 - Detailed angiographic evaluation of hepatic arterial anatomy
 - Identification and coil embolization of extrahepatic vessels if needed
 - Administration of Tc-99m macroaggregated albumin (MAA) to simulate Y90 distribution
 - SPECT/CT imaging to assess lung shunt fraction and extrahepatic deposition
 - Generally, lung shunt less than 15-20% don't require dose adjusting, but each is patient specific depending on treatment area/tumor size
 - Max lung dose: 30 Gy/treatment, 50 Gy lifetime

Procedure Overview

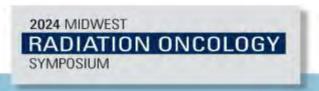
- Treatment Angiogram
 - Usually performed 1-2 weeks after mapping
 - Selective catheterization of target hepatic arteries
 - Administration of Y90 microspheres
 - Post-procedure Bremsstrahlung SPECT/CT or PET/CT to confirm microsphere distribution (optional)

RADIATION ONCOLOGY

2024 MIDWEST

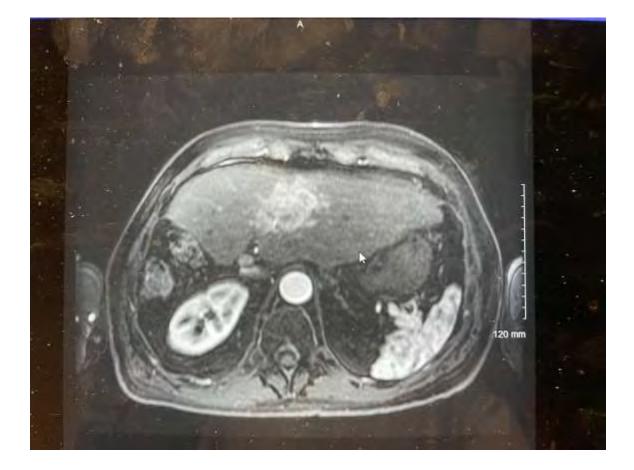
SYMPOSIUM

Y90 Microspheres and Special Considerations


- Types of Y90 Microspheres
 - Glass Microspheres (TheraSphere)
 - Produced by Boston Scientific
 - Higher specific activity (2500 Bq/sphere)
 - Smaller number of particles per treatment
 - Resin Microspheres (SIR-Spheres)
 - Produced by Sirtex Medical
 - Lower specific activity (50 Bq/sphere)
 - Larger number of particles per treatment

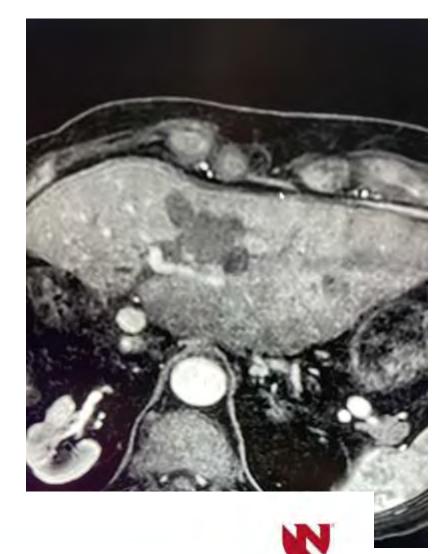
TheraSphere in Portal Vein Thrombosis (PVT)

- TheraSphere can be used in cases with portal vein thrombosis
- Reasons:
 - Lower embolic effect due to fewer particles
 - Higher specific activity allows for delivery of therapeutic dose with less volume
- SIR-Spheres generally contraindicated in PVT due to higher embolic load
- PVT patients treated with TheraSphere show:
 - Median survival of 10-13 months in various studies
 - Potential for downstaging to transplantation in select cases

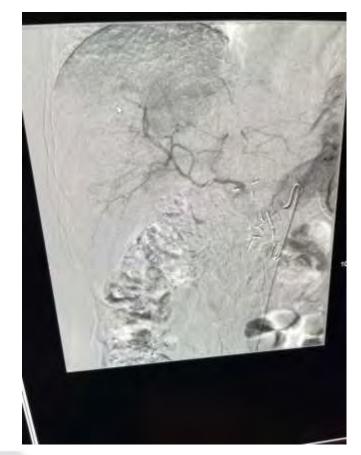

Dosimetry Approaches

- Standard Dosimetry
 - Based on empirical or semi-empirical methods
 - Often uses body surface area (BSA) method or standard absorbed dose to the treated liver volume
 - Example: 120 Gy to the treated liver volume for glass microspheres
- Personalized Dosimetry
 - Tailored to individual patient and tumor characteristics
 - Uses 3D imaging and sophisticated dose calculation algorithms
 - Aims to deliver optimal dose to tumor while sparing healthy liver tissue
 - Methods may include: Partition model, Voxel-based dosimetry, Monte Carlo simulations

62 y.o. patient with metastic colorectal cancer



62 y.o. patient with metastic colorectal cancer


68 y.o patient with neuroendocrine tumor metastatic to liver

2024 MIDWEST

SYMPOSIUM

RADIATION ONCOLOGY

Clinical Evidence: DOSISPHERE-01 Trial (Garin et al., 2021)

- Design: Multicenter, open-label, randomized phase 2 trial
- Participants: 56 patients with locally advanced or inoperable HCC
- Comparison: Personalized dosimetry vs. Standard dosimetry for Y90 glass microspheres
- Dosimetry Approaches:
 - Standard arm: 120 ± 20 Gy to the treated liver volume
 - Personalized arm: At least 205 Gy to the index lesion
- Primary Outcome: Tumor response rate at 3 months
- Results:
 - Tumor response rate: Personalized 71% vs. Standard 36% (p=0.0074)
 - Median OS: Personalized 26.6 months vs. Standard 10.7 months (p=0.0096)
- Conclusion: Personalized dosimetry significantly improved outcomes compared to standard dosimetry

Y90 Evidence – Recent Studies

- LEGACY Study (Salem et al., 2021)
 - Design: Retrospective, single-arm, multicenter study
 - Participants: 162 patients with early and advanced HCC
 - Intervention: Y90 glass microspheres (TheraSphere)
 - Key Results:
 - Objective response rate: 88%
 - Median overall survival: 6.5 years
 - 3-year overall survival: 86.6%
 - Transplant/resection rate: 31%
 - Conclusion: Y90 showed high response rates and promising survival outcomes in early and advanced HCC

Recent Studies on Y90 Efficacy

- PREMIERE Study (Salem et al., 2016, with long-term follow-up)
 - Design: Randomized, prospective study
 - Participants: 45 patients with early-stage HCC
 - Comparison: Y90 vs. conventional transarterial chemoembolization (cTACE)
 - Key Results:
 - Median time to progression: Y90 >26 months vs. cTACE 6.8 months (p=0.0012)
 - Median overall survival: Y90 not reached vs. cTACE 18.5 months at the time of censoring
 - Conclusion: Y90 demonstrated superior time to progression compared to cTACE in early-stage HCC

Y90 in the HCC Treatment Algorithm

- Y90 in Multidisciplinary Management
 - Bridge to transplantation
 - Downstaging
 - Alternative to TACE in intermediate-stage HCC
 - Potential first-line therapy in selected patients
 - Combination with systemic therapies in advanced HCC

Y90 Future Directions

- Ongoing Research
 - Combination with immunotherapy
 - Further refinement of personalized dosimetry
 - Novel microsphere technologies
 - Expanding indications (e.g., early-stage HCC, metastatic liver disease)

Conclusion

- Take-Home Messages
 - Y90 is an effective locoregional therapy for HCC across various stages
 - Comparable survival outcomes to standard therapies with better quality of life and safety profile
 - Personalized dosimetry shows promise in improving outcomes
 - Potential for combination strategies with systemic therapies
 - Ongoing research may further expand indications and improve results

