### Artificial Intelligence in Prostate Cancer Risk Stratification

Development, Validation, and Diagnostic Performance of a Radiomic Model for Prediction of Prostate Cancer Recurrence

Linda My Huynh, PhD MSc Department of Radiation Oncology August 16, 2024



University of Nebraska Medical Center

### **Disclosures**

No conflicts of interest to disclose



# Prostate cancer is characterized by indolence and long natural life history.

- Prostate cancer is the most common cancer among men
- Natural life history ranges between 10 15 years
- Treatment includes watchful waiting, surgery, and/or radiation
- Long-term sequelae from treatment is significant



## The clinical care pathway for offers several details for risk stratification.



PSA testDREBiopsyImaging<4 ng/ml</td>clinicalGleasonlocal4-10 ng/mlstageGraderegional>10 ng/mlGroupdistant

Surgery/Radiation

### Current risk stratification methods are based on "macro" clinicopathologic features

 Early prediction of recurrences may allow for proactive, diseasetailored treatment

| Variable | Level   | Points | Variable | Level | Points | Points               | 2     | 10  | 20  | 30     | 40   | 50   | 6            | ,  | 70   | 80    | 90   | 100   |
|----------|---------|--------|----------|-------|--------|----------------------|-------|-----|-----|--------|------|------|--------------|----|------|-------|------|-------|
| PSA      | 2.0-6   | 0      | T stage  | T1/T2 | 0      | PSA                  | 0.1   |     | 1   | 21     | 467  | 8 9  | 10           | 12 | 18 2 | 20 30 | 45 7 | 0 110 |
|          | 6.1-10  | 1      |          | тза   | 1      |                      |       | TŽa | T2  | ¢      |      | Tão  |              |    |      |       |      |       |
|          | 10.1-20 | 2      |          |       |        | Clinical Stage       | Tic   |     | Tia | b T2b  |      |      |              |    |      |       |      |       |
|          | 20.1-30 | 3      | % pos bx | <34%  | 0      |                      |       |     | 00  | 3402   |      |      |              |    |      |       |      |       |
|          | >30     | 4      |          | ≥34%  | 1      | Biopsy Gleason Sum   | 5     | g.  | 3   | +3     | -    | 3-34 |              |    |      |       |      |       |
| Gleason  | 1-3/1-3 | 0      |          |       |        | Tatel Onists         | -     | -   | é   | ŵ      | á.   |      |              |    | 10   | 100   |      |       |
|          | 1-3/4-5 | 1      | Age      | <50   | 0      | TOGE POINTS          |       | 20  | -   | 90     | ~~~~ | 100  | 12           |    | **   | 160   | 180  | 200   |
| J        | 4-5/1-5 | 3      |          | ≥50   | 1      | 60 Month Rec. Free F | Prob. |     | .96 | .93 .9 | .85  | .8   | <i>i .</i> 6 | 5  | 4 .3 | 2 .1  | .05  |       |

External testing yields AUC 0.6 – 0.8

## The clinical care pathway for offers several details for risk stratification.



## Radiomics can extract sub-visual, "micro" features from medical imaging.



MRI-derived radiomics were often used to predict grade and stage, but seldom applied to treatment response.



# Methodology in currently available studies were highly heterogenous.

| Author    | n=. | Images<br>Used | Feature<br>Selection | Region<br>of<br>Interest | Feature<br>Number | Model<br>Validation | Results                                      |
|-----------|-----|----------------|----------------------|--------------------------|-------------------|---------------------|----------------------------------------------|
| Bourbonne | 195 | T2WI           | Multilayer           | Lesion                   | NR                | 107 training        | Clinical AUC=0.68                            |
| (2020)    |     | ADC            | Perceptron           |                          |                   | 88 external         | Radiomic AUC=0.82                            |
|           |     |                | SPSS v24.0           |                          |                   | testing             | Clinical and radiomic AUC=0.00               |
| Li        | 198 | T2WI           | Minimum              | Prostate                 | 5                 | 5-fold, 10-run      | Training model HR=7.01, 95%CI: 1.21-40.68,   |
| (2021)    |     | DWI            | redundancy           |                          |                   | cross-validation    | p<0.05, independent of preoperative and      |
|           |     | ADC            | relevance<br>(mRMR)  |                          |                   | 127 testing         | analysis                                     |
|           |     |                |                      |                          |                   |                     |                                              |
|           |     |                |                      |                          |                   |                     | Testing model HR=1.9, 95%CI: 1.4-2.7, p<0.05 |
| Yan       | 485 | T2WI           | Deep survival        | Lesions                  | 155/702           | 368 training        | 3-year BCR training AUC=0.84                 |
| (2021)    |     |                | radiomic             |                          |                   | 34 external         | 3-year BCR external validation AUC=0.85      |
|           |     |                | neural network       |                          |                   | 83 external         | 5-year BCR training AUC=0.83                 |
|           |     |                |                      |                          |                   | validation          | 5-year BCR external testing AUC=0.88         |
|           |     |                |                      |                          |                   |                     | 5-year BCR external validation AUC=0.88      |
|           |     |                |                      |                          |                   |                     | Significantly improved accuracy compared to  |
|           |     |                |                      |                          |                   |                     | GG-RP, CAPRA-S, NCCN, and CAPRA              |
| Shiradkar | 133 | T2WI           | Random forest        | Prostate                 | 10                | Cross-validation    | 3-year BCR HR: 2.91, 95%CI: 1.45-11.51,      |
| (2022)    |     | ADC            | (RF) & Cox           | Lesions                  |                   | 2:1 training:       | p=0.02                                       |
|           |     |                | proportional         |                          |                   | testing             | Significantly improved accuracy compared to  |
|           |     |                | regression           |                          |                   |                     | clinical characteristics CAPRA CAPRA-S and   |
|           |     |                | model                |                          |                   |                     | Decipher scores                              |
|           |     |                |                      |                          |                   |                     |                                              |

Huynh 2022

# The radiomics pipeline is highly variable and unstandardized.



- Image acquisition: MRI, CT, PET, U/S
- <u>Image pre-processing</u>: regions of interest, manual/automatic segmentation, histogram matching
- <u>Feature extraction</u>: density, texture, contrast, brightness, # of features
  - Data integration and analysis: feature reduction, cross-validation, clinical features
- <u>Model validation</u>: multi-institutional recruitment, external validation, n:n ratios..

# Intentional modifications to the radiomic pipeline increased clinical utility and reproducibility.



# Intentional modifications to the radiomic pipeline increased clinical utility and reproducibility.





# Histogram matching improves feature stability for model development.



Nyul 2018

# Intentional modifications to the radiomic pipeline increased clinical utility and reproducibility.



# Stepwise analysis facilitated robust model development and testing.



# The final cohort was representative of prostate cancer patients.

Age: 64.4 ± 7.4 years Preoperative PSA: 9.4 ± 9.3 ng/mL Follow-up Time: 3.4 ± 1.9 years

|                           | Training |      | Testi |      |       |
|---------------------------|----------|------|-------|------|-------|
|                           | n        | %    | n     | %    | р     |
| Pathologic Tumor Stage    |          |      |       |      | 0.739 |
| 2a                        | 93       | 32.1 | 17    | 34.7 |       |
| 2b                        | 61       | 21.0 | 8     | 16.3 |       |
| 2c                        | 22       | 7.6  | 6     | 12.2 |       |
| 3a                        | 91       | 31.4 | 15    | 30.6 |       |
| 3b                        | 21       | 7.2  | 3     | 6.1  |       |
| 4                         | 2        | 0.7  | 0     | 0    |       |
| Pathologic GGG            |          |      |       |      | 0.137 |
| 1                         | 28       | 9.9  | 7     | 14.6 |       |
| 2                         | 148      | 52.1 | 20    | 41.7 |       |
| 3                         | 63       | 22.2 | 7     | 14.6 |       |
| 4                         | 13       | 4.6  | 4     | 8.3  |       |
| 5                         | 32       | 11.3 | 10    | 20.8 |       |
| Seminal Vesicle Invasion  | 26       | 9.0  | 4     | 8.2  | 0.241 |
| Extraprostatic Extension  | 91       | 31.4 | 15    | 30.6 | 0.911 |
| Lymph Node Invasion       | 6        | 2.1  | 1     | 2.0  | 0.771 |
| Positive Surgical Margins | 88       | 31.1 | 14    | 28.6 | 0.867 |
| Biochemical Recurrence    | 52       | 17.9 | 8     | 16.3 | 0.785 |

### Image normalization allowed for comparability across all four surgeons (and >100 different imaging protocols).



Huynh 2023

### Eighteen radiomic features were non-redundant and highly correlated with recurrence.

|      | Prostate-wavelet-HHH_glcm_Imc2                   |           |        |        |                  |             |        |        |        |
|------|--------------------------------------------------|-----------|--------|--------|------------------|-------------|--------|--------|--------|
|      | Prostate-wavelet-LHH_glcm_Correlation            |           |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-HHL_firstorder_Mean             |           |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-LHL_firstorder_Kurtosis         |           |        |        |                  |             |        |        |        |
|      | Prostate-log-sigma-1-0-mm-3D_firstorder_Skewness |           |        |        |                  |             |        |        |        |
|      | Prostate-original_glcm_Correlation               |           |        |        |                  |             |        |        |        |
| 0Ce  | Prostate-wavelet-LLH_glcm_Imc1                   |           |        |        |                  |             |        |        |        |
| rtar | Prostate-original_shape_Maximum2DDiameterSlice   |           |        |        |                  | 0           |        |        |        |
| odu  | Prostate-wavelet-HLH_firstorder_Median           |           |        |        |                  |             |        |        |        |
| u a  | Prostate-original_shape_Sphericity               |           |        |        |                  |             |        |        |        |
| ture | Prostate-wavelet-LLH_firstorder_Kurtosis         |           |        |        |                  |             |        |        |        |
| ea   | Prostate-original_shape_Flatness                 |           |        |        |                  |             |        |        |        |
| -    | Prostate-wavelet-LLH_firstorder_Mean             |           |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-HHH_firstorder_Mean             | -         |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-HHH_firstorder_Median           |           |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-LHH_firstorder_Median           | _         |        |        |                  |             |        |        |        |
|      | Prostate-wavelet-LHH_firstorder_Mean             |           |        | 1      |                  |             |        |        |        |
|      | Prostate-wavelet-HLH_firstorder_Mean             |           |        |        |                  |             |        |        |        |
|      | 0.0                                              | 00 0.0025 | 0.0050 | 0.0075 | 0.0100<br>Rankin | 0.0125<br>C | 0.0150 | 0.0175 | 0,0200 |

## Cross-validation yielded AUC=0.82, compared to 0.66 and 0.64 for the UCSF nomogram and CAPRA score.



UCSF-CAPRA score AUC=0.66±0.05 MSKCC Nomogram AUC=0.64±0.04 UCSF-CAPRA score AUC=0.61 MSKCC Nomogram AUC=0.73

# Radiomic features also correlate well with clinicopathologic features.

|                                                  | Correlation |          | 95% CI |        |
|--------------------------------------------------|-------------|----------|--------|--------|
| Feature                                          | Coefficient | p- value | Lower  | Upper  |
| Prostate-log-sigma-1-0-mm-3D_firstorder_Skewness | 0.150       | 0.012*   | 0.034  | 0.262  |
| Pathology GGG                                    |             |          |        |        |
| Prostate-original_glcm_Correlation –             | -0.111      | 0.064    | -0.225 | 0.006  |
| Pre-Treatment PSA                                |             |          |        |        |
| Prostate-original_shape_Flatness -               | 0.127       | 0.034*   | 0.010  | 0.241  |
| Pre-Treatment PSA                                |             |          |        |        |
| Prostate-original_shape_Maximum2DDiameterSlice - | 0.153       | 0.009*   | 0.038  | 0.264  |
| Age                                              |             |          |        |        |
| Prostate-original_shape_Sphericity – Biopsy GGG  | -0.101      | 0.090    | -0.215 | 0.016  |
| Prostate-wavelet-HHL_firstorder_Mean -           | 0.126       | 0.034*   | 0.010  | 0.239  |
| Positive Surgical Margin                         |             |          |        |        |
| Prostate-wavelet-HLH_firstorder_Median -         | 0.113       | 0.057    | -0.003 | 0.227  |
| Pathology GGG                                    |             |          |        |        |
| Prostate-wavelet-LHH_firstorder_Median -         | 0.099       | 0.096    | -0.018 | 0.213  |
| Positive Surgical Margin                         |             |          |        |        |
| Prostate-wavelet-LHH_glcm_Correlation -          | -0.133      | 0.026*   | -0.245 | -0.016 |
| Biopsy GGG                                       |             |          |        |        |
| Prostate-wavelet-LHH_glcm_Correlation –          | -0.150      | 0.011*   | -0.262 | -0.034 |
| Pathology GGG                                    |             |          |        |        |
| Prostate-wavelet-LLH_firstorder_Mean - Age       | -0.122      | 0.039*   | -0.234 | -0.006 |
| Prostate-wavelet-LLH glcm Imc1 - Age             | 0.113       | 0.056    | -0.003 | 0.226  |

# Increased sample size introduced significant heterogeneity but improved generalizability.

- Increased sample size
  - Higher power
  - Higher number of patients with recurrence
  - Higher number of features included in the final model
- Introduction of heterogeneity (in the right places)
  - Higher likelihood of generalizability to external centers
- Improved methodology
  - Improved image normalization
  - Improved feature stability testing



### On the horizon...

- Combined clinicopathologic and radiomic nomograms for prostate cancer risk stratification
- Intersection between pathomic, radiomic, and histiomic models to identify tumor heterogeneity and microenvironment
- Development of cross-disciplinary tissue-level targets to enhance treatment response



The fact that progress has actually been made, in the most part, by ordinarily clever people, building step by step from the work of their predecessors makes the story more remarkable.

> John Gribbin "Science: A History"



## **Acknowledgements**

#### **Committee Chair**

• Michael J. Baine MD, PhD

#### Supervisory Committee:

- Chi Lin MD, PhD
- Jane Meza, PhD
- Christopher Deibert MD, MPH
- Shuo Wang, PhD

#### **Collaborators:**

- Thomas E Ahlering, MD
- Chad A LaGrange, MD
- Andrew Christiansen, MD
- Shawna Boyle, MD
- David Lee, MD

#### MD/PhD Scholars Program:

- Justin Mott MD, PhD
- Jen Brady, MPA
- Brianna Simmons, BS

#### Family & friends

- Sam & Kimberly Huynh
- Hans Leong, BS

#### **Co-authors**

- Erica Huang, BS, MSc
- Olivia Taylor, BS
- Yaegyeong Hwang, BS
- Joshua Tran, BA, MSc
- Jacob T Marasco, BS
- Benjamin Bonebrake, BSBA
- Sophia Cima, BS
- Shea Swanson, BS
- Eliana Haddadin, BS















### Logistical nightmare.



## Four surgeons provided a representative population of prostate cancer patients undergoing surgery.

### **Inclusion Criteria:**

Diagnostic 3Tesla prostate mpMRI prior to radical prostatectomy
No history of neoadjuvant or adjuvant therapy
At least two years of follow-up following surgery, via postoperative serum PSA

### **Exclusion Criteria:**

- Received radiation therapy or additional therapies after radical prostatectomy Had PSA persistence following radical prostatectomy

Internal Dataset (2 surgeons at UNMC) n= 87 External Dataset 1 (1 surgeon from a referral-based practice) n= 187 External Dataset 2 (1 surgeon from UC Irvine) n= 65

# The intersection between prostate cancer and radiomics was in its infancy.

### The Use of Magnetic Resonance Imaging-derived Radiomic Models in Prostate Cancer Risk Stratification

#### Linda My Huynh, MSc. Usamar of Nitrada Mediat Geor. Usaka

In recent years, the advancement of precise medical imaging has facilitated the establishment of radiomics, a computer-based method of extracting and quantifying subvisual imaging characteristics." These features lie, qualities of intensity, texture, shape, or wavelet! can be extracted from a variety of medical images (CT, MRI, or positron emission tomography) using advanced mathematical algorithms, aggregated into predictive models via machine learning, and applied to enhance personalized therapies. In the last decade, several studies have highlighted the enormous potential of radiomics in enhancing care for a variety of diseases. These include, but are not limited to, cancare of the statesticational least

diction beyond mitial diagnosisand toward risk stratification, prognostication, and prediction of therapy response.

Of the 218 articles published on MRI-derived prostate radiomics in the last 5 years, 42 (19.3%) have utilized MRI-derived radiomics specifically for prostate cancer risk stratification and prognostication. Prediction of Gleason grade group and adverse pathologies, including seminal vesicle invasion, extraprostatic extension, and lymph node involvement, were primary endpoints in 21 (50%) and 11 (26,2%) published articles from 2017 to 2022. In studies predicting Gleasin score, radiomic models differentiated well between Gleason score risk groups and in predicting Gleason grade group upgrading (ROC AUC 0.63-0.89 23 Studies predicting adverse rothology also calded



Figure Number of prostate cancer radiomics publications from 2017 to 2022.

have included external validation of their radiomic models, and it is clear that further exploration is required before clinical integration can be considered.

As an MD/PhD scholar at the University of Naberaka Medical spouse: Given the high heterogeneity of prostate cancer, the quantitative characterization of tumor heterogeneity and identification of imaging-based biomarkers may enable disease-tailoroid treatround advanting. Disease-tailoration

MARCH 1021

