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For radiation 
oncologists, 
 *spatial* 
dose/response 
data is what 
separates us from 
other cancer 
paradigms

Ferum

DWI

DCE

IVIM

CEST

T2

DSC

BOLD



Father of ML: 
Leo Breiman, 1928 - 2005

1954 PhD Berkeley (mathematics) 

1960 -1967 UCLA (mathematics)

1969 -1982 Consultant

1982 - 1993 Berkeley (statistics)

1984 “Classification & Regression Trees” 
(with Friedman, Olshen, Stone)

1996 “Bagging”

2001 “Random Forests”
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Richard Bellman: “The curse of 
dimensionality”

Bellman, first editor of Mathematical Biosciences, was 
working in dynamic optimization

-Referred initially to issues that arise in higher-order 
analyses that are hard for humans to conceptualize as we 
move increase dimensions or add time-varying 
components

-Broadly, refers to typical increase in sparsity of data in 
high-dimensions and information reduction through 
dimensional summarization.

https://en.wikipedia.org/wiki/Mathematical_Biosciences


Research at MD Anderson

You are here!



Research at MD Anderson

Example:
Information loss through summarization by dimensionality 
reduction

3D

2D

1D

Dry 

mouth?

Y/N
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What NTCP models were built for…
1990 2000
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Standard phenomenological modelling methodology

”Dose”

Generalised linear modelling
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Standard phenomenological modelling methodology

Generalised linear modelling

”Dose”
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Standard phenomenological modelling methodology

EUD
VxDmean

Generalised linear modelling
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Standard phenomenological modelling methodology

EUD
VxDmean

Reduce DVH to one (or a 
limited number of) dose 
metrics
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Potential problems with the standard dose-reduction 
approach

Reduce dose distribution to DVH
- Removes all spatial information
- Assumes equal sensitivity/response of all 

parts of OAR

Alternatives:
- Divide into anatomical substructures
- Dose surface histograms 
- Consider (and/or explicitly model) local 

response on voxel-to-voxel basis
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Adding spatial information to (N)TCP models – general 
strategies

One per patient One per patientTraditional NTCP 

modelling

Voxel-based analysis 

(VBA), convolutional 

neural networks (CNN)

Many per patient (2D 

or 3D data) 
One per patient

Image-based response 

models

Many per patient (2D 

or 3D data) 

Many per patient (2D 

or 3D data) 

Dose variable(s) Response measure

Palma et al. Cancers 2021;13(14):3553. Palma et al. Phys Med 2020;69:192-204. Appelt et al. Clin Oncol 2022;34(2):e87-e96
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Adding spatial information to (N)TCP models

p1(O|Dx1)

p2(O|Dx2)

p3(O|Dx3)

p4(O|Dx4)

p-value map

VBA
Single patient-level 

prediction

p(O|D)
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New anatomical insights from voxel-based analysis of 
dose? 

Generally for VBA based studies:

• How dependent are the results by structures in the dose data (e.g. dose gradients and robustness of planned relative 

to delivered dose)?

• Issues with statistical analysis in some parts of the published literature
• Shortall et al. Flogging a Dead Salmon? IJROBP 2021
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Adding spatial information to (N)TCP models

p1(O|Dx1)

p2(O|Dx2)

p3(O|Dx3)

p4(O|Dx4)

p-value map

Palma et al. Cancers 2021;13(14):3553. Palma et al. Phys Med 2020;69:192-204. Appelt et al. Clin Oncol 2022;34(2):e87-e96

VBA

CNN
single patient-level 

prediction / classification

Saliency map? 

Sensitivity map?
p(O|D)

Single patient-level 

prediction

p(O|D)
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Improved toxicity prediction with voxel-based analysis?

Appelt et al. Deep Learning for Radiotherapy Outcome Prediction Using Dose Data - A Review. Clin Oncol 2022

Patient 

number

Cancer site Ref Improvement over GLM External 

validation

42 Cervical Zhen 2017

125 Liver Ibragimov 2018

784 Head and neck Men 2019

120 Liver Ibragimov 2019

122 Liver Ibragimov 2020 -

160 Oropharyngeal Welch 2020

70 NSCLC Liang 2019

66 Oropharyngeal Wang 2020 -

52 Post-prostatectomy Yang 2021 -

217 Thoracic Liang 2021
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Adding spatial information to (N)TCP models – general 
strategies

One per patient One per patientTraditional NTCP 

modelling

Voxel-based analysis 

(VBA), convolutional 

neural networks (CNN)

Many per patient (2D 

or 3D data) 
One per patient

Image-based response 

models

Many per patient (2D 

or 3D data) 

Many per patient (2D 

or 3D data) 

Dose variable(s) Response measure

Palma et al. Cancers 2021;13(14):3553. Palma et al. Phys Med 2020;69:192-204. Appelt et al. Clin Oncol 2022;34(2):e87-e96
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p(Rx1|Dx1)

p(Rx2|Dx2)

p(Rx3|Dx3)

p(Rx4|Dx4)

Image-based response models

single model linking dose & 

local response

p(O|D)

Multilevel mixed effect model 

Adding spatial information to (N)TCP models
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Better or novel biological insights from voxel-based 
analysis of dose?

Dose LET Imaging changes

Model of RBE 

dependence on dose 

and LET

A systematic review of clinical studies on proton Relative Biological Effectiveness (RBE)

• 13 studies using voxel-wise analyses of patient effects versus dose and LET

• 3/13: No effect of LET on RBE

• 6/16: Maybe effect of LET on RBE

• 4/13: Effect of LET on RBE

• Significant methodological modelling issues

• E.g. no consideration of nested / multi-level data

Underwood et al. A systematic review of clinical studies on variable proton Relative Biological Effectiveness (RBE). Radiother Oncol. 2022
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Example: Age and dysphagia

  Tongue   Geniohyoid M.
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Optimum OPC model includes 
mylohyoid/geniohyoid dose & age 

42
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Adding spatial data…
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T1W Muscle damage/dose biomarker



Research at MD Anderson

What if we just used standardized T1W/T2W MRI?
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Osteoradionecrosis (ORN)

“Exposed bone in a 
field of irradiation.”

MDACC rate ~6-7%, 
which means about 
65 cases/year 
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Normal Tissue Complication Probability (NTCP)
For ORN 

adapted from van Dijk et al IJROBP 2021
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Temporal Awareness: Time to ORN

54
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ORN Risk GUI

56
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So how does AI model adoption practically occur?

Choudhury A
Toward an Ecologically Valid Conceptual Framework for the Use of Artificial Intelligence in Clinical Settings: Need for Systems Thinking, Accountability, 
Decision-making, Trust, and Patient Safety Considerations in Safeguarding the Technology and Clinicians
JMIR Hum Factors 2022;9(2):e35421. doi: 10.2196/35421

https://doi.org/10.2196/35421
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Real Life: Use-case specific acceptance testing

6

1
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Example: Decision Support Tools for Surgical 
vs. Non-surgical therapy selection
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ORATOR2
Example: Decision Support Tools

doi:10.1001/jamaoncol.2022.0615
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If I do TORS, there is no PM or ECE >> Best outcome
• I have spared RT ☺

If I do TORS, and there is low volume ENE or close margin 
• Need adjuvant RT [bimodality]

• MDADI is the same as RT alone,
• DIGEST is *worse* than RT alone 

If I do TORS, and there is PM or >2mm ENE
• Need adjuvant chemoRT

• MDADI/DIGEST is worse than chemo(RT) 

MDs/MDTs are bad at 
quantification of risk
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MDADI scores in HPV+ OPSCC
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McDowell L, et al (unpublished, 2023)

We are bad at quantification of risk
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Optimized decision support for selection of transoral robotic surgery or (chemo)radiation therapy based on 
posttreatment swallowing toxicity  DOI: 10.1002/cam4.5253
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Red==RT better Blue==TORS better
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30 cases

24 unique

6 inverted

Multi-Specialty Expert Physician Identification of Extranodal Extension in Computed 

Tomography Scans of Oropharyngeal Cancer Patients: Prospective Blinded Human Inter-

Observer Performance Evaluation
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Problem: 
Humans are crummy at 
pathologic ENE (pre)detection
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• “I’m not sure about *this* case…”
• “What if it misses a node?”
• “I just don’t trust it like I trust my 

colleagues…”

So, why aren’t  we using these tools?
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The current clinical problem: 
Trustworthiness/Uncertainty Estimation

Burton & Herd, Addressing uncertainty in the safety assurance of machine-learning. Front. Comput. Sci., 06 April 2023
Sec. Software
Volume 5 - 2023 | https://doi.org/10.3389/fcomp.2023.1132580

https://doi.org/10.3389/fcomp.2023.1132580


Current AI Approaches

Data

Single

“Black box”

Estimator

Cohort

Testing

Cohort 

Validation

<45% certainty

<65% certainty

>85% certainty

>90% certainty
Data

 Probabilistic  

Estimator

?

Unknown/

unquantified 

performance

Certainty for individual 

patient

Uncertainty-quantified approaches

Cohort

Testing

Case-specific accuracy 

estimation

Cohort 

Validation

Model

Performance

Model

Performance

80%

80%

The current clinical problem: 
Trustworthiness/Uncertainty Estimation
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Statement: Without uncertainty quantification, we 

cannot move forward
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The current clinical problem: 
Trustworthiness/Uncertainty Estimation

K. Zou et al. Meta-Radiology 1 (2023) 100003
https://doi.org/10.1016/j.metrad.2023.100003
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The current clinical problem: 
Trustworthiness/Uncertainty Estimation

K. Zou et al. Meta-Radiology 1 (2023) 100003
https://doi.org/10.1016/j.metrad.2023.100003
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The current clinical problem: 
Trustworthiness/Uncertainty Estimation

K. Zou et al. Meta-Radiology 1 (2023) 100003
https://doi.org/10.1016/j.metrad.2023.100003
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Uncertainty estimation 
allows direct safety 
assessment

Risk Estimation flow charts from ISO 14971:2019
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https://arxiv.org/abs/2005.13596
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Sanne van Dijk, PhD
UMC Gronigen

Oncologic prediction GUI
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MDACC Train MDACC validation UMCG validation PMH validation

c-index 0.71 [0.65-0.77] 0.76 [0.68-0.83] 0.73 [0.67-0.79] 0.75 [0.69-0.81]
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Web-based individual OS risk 
prediction in new patients
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Predicting dynamic injury AND response kinetics

92
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Optimal Treatment Selection in Sequential Systemic and Locoregional Therapy of Oropharyngeal 
Squamous Carcinomas: Deep Q-Learning With a Patient-Physician Digital Twin Dyad
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AI is good at survival prediction AND selecting therapy based on toxicity]
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Please email/visit soon!

cdfuller@mdanderson.org

But the view looks good for computational models in 
#RadOnc
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