Seizures in benign and malignant brain tumors

Olga Taraschenko, MD, PhD Associate Professor, Department of Neurological Sciences Director, Comprehensive Epilepsy Program Director, Autoimmune Seizure Laboratory, UNMC

April 19, 2024

Disclosures

None

Learning objectives

- Review the most common types of brain tumors associated with seizures
- Discuss the current guidelines on symptomatic management of seizures in tumors
- Evaluate the effects of antitumor therapy on seizure control

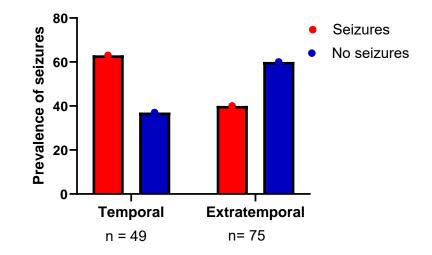
Brain-tumor related epilepsy

- Epilepsy = two or more seizures at least 24h apart, or a single seizure + high risk of recurrent seizures (i.e., abnormal MRI or EEG)
- Drug-resistant epilepsy= failure of two anti-seizure medications (ASMs)
- Risk of epilepsy in CNS tumors
 - o low grade gliomas (LGG): 60-100%
 - o glioblastomas: 40-60%
 - o meningiomas: 20-30%
 - o brain metastases: 25%
- 1/3 of patients are drug-resistant


Peters et al, Neurology 2024; Fisher et al., Epilepsia 2014

Risk factors for seizures

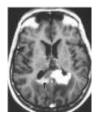
- 30-50% of patients develop seizures at the tumor diagnosis
- 6-45% develop seizures during treatment
- Risk factors:
 - o LGG
 - o tumor location
 - ✓ superficial cortical location >> subcortical
 - ✓ temporal and insular > frontal region
 - ✓ supratentorial
 - o larger tumor size in LGG
 - o smaller size in high-grade tumors
 - \circ genetics



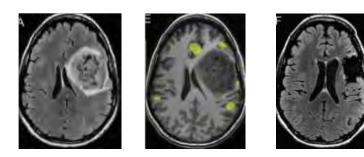
Tumor histopathology

Lee et al., Arch Neurol 2010

Tumor location and size



- Temporal region: LGG present with more seizures than high-grade gliomas
- Tumor volume correlates with seizure tendency in LGG with a 3% increase per cm³


Lee et al., Arch Neurol 2010

Seizure as the first presentation

- More likely in supratentorial tumors
- Less likely in pericallosal ("butterfly") high-grade tumors
- Seizure is the only manifestation in many insular tumors:
 o up to 98% of grade II gliomas
 o minimal finings on exam

Lee et al., Arch Neurol 2010; Duffau, J Neurosurg 2009; Luna et al, Radiology 2021

Seizure semiology by tumor location

Frontal lobe

Simple motor
Hypermotor
Speech difficulties
Gelastic or olfactory

Temporal lobe

- Aura (abdominal, gustatory, olfactory, psychic)
 - Visual, autonomic
 - -Automatisms
 - Aphasia

Insular

- Aura (similar to temporal) - Fear - Hypersalivation -Tachy-/bradycardia

<u>Parietal</u>

- Complex visual illusions and hallucinations

- -Tonic motor
- -Automatisms

Occipital

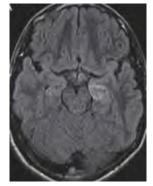
-Simple visual hallucinations -Uncontrollable eye movements, nystagmus

Peters et al, Neurology 2024

Tumor genetics and seizures

- Presence of mutations in codons 132 and 172 of isocitrate dehydrogenase 1 and 2 (*ICD* 1 and 2)
 - o accumulation of glutamate-like metabolites
 - o activation of NMDA receptors leading to seizures

Pathophysiology of seizures in tumors: aberrant glutamate signaling


- Increased expression of glutamate receptors
- Decreased activity of glutamine synthase
- Higher (~100 times!) presence of extracellular glutamate in periglioma tissue
- Decreased expression of glutamate transporters
- Changes in GABA metabolism
- Specific mutations *ICD 1* and 2
- Excessive glutamatergic tone results in activation of mTOR and MAPK signaling => cell growth and epileptogenesis

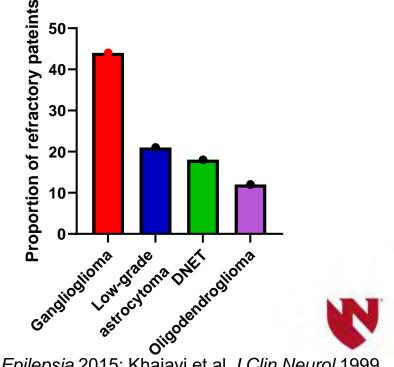
Lange et al., Cells, 2021; Vehcht et al, The Oncologist, 2014

Epilepsy in pediatric CNS tumors

- Occurs in 25-30% of children with tumors
- Seizure as a presenting symptom: ~15%
- Long-term epilepsy associated tumors (LEATs):
 - dysembryoplastic neuroepithelial tumors (DNET), gangliogliomas, oligodendrogliomas
 - \circ can increase overall mortality by a factor of ~5
- Risk factors:
 - cerebral cortex (53%) > midline (18%) > infratentorial (9%)
 - \circ low grade and glioneuronal



DNET


Fernandez and Loddenkemper Seizure, 2017

Seizures by pathology in children

Seizure occurrence

Seizure refractoriness

Ulrich et al., Epilepsia 2015; Khajavi et al J Clin Neurol 1999

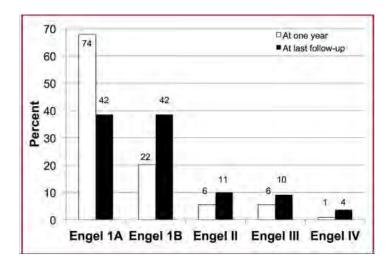
Summary

- Seizures commonly herald the diagnosis of CNS tumors (more likely LGG) in adults and children
- LGG are more epileptogenic than high-grade tumors
- Locations in the temporal region (and insula) are more likely to be associated with seizures compared to other locations
- Seizures independently increase mortality in long-term epilepsy associated tumors (LEATs)

Treatment of seizures in CNS tumors

- Initiate after the first seizure
- If left untreated, risk of recurrence is 90% after the second seizure
- Preferred antiseizure medications (ASMs): levetiracetam, valproate* or their combination
 - \circ also effective in metastatic tumors
 - o valproate and temozolomide has NOT improved survival in GBM
- Next line: lacosamide, lamotrigine, zonisamide
- Topiramate (cognitive slowing), oxcarbazepine (hyponatremia)
- Add-on perampanel: 57% seizure freedom in gliomas
- Enzyme-inducing ASMs (phenobarbital, carbamazepine, phenytoin) can mitigate antitumor effects of chemotherapeutic agents

Tumor surgery as a tool for seizure control


- Most impactful in temporal lobe LGG and other glioneuronal tumors
- Extensive resection (gross total) results in much better seizure control than subtotal or lesionectomy
- Additional benefits:
 - \circ shorter duration of preoperative epilepsy
 - age <18 years
 - $\circ~$ use of intracranial EEG
 - o ipsilateral hippocampectomy

Englot et al., Neurosurgery 2012; Still et al., Neurosurgery 2019

Seizure outcomes after glioma resection

Insular gliomas (109 patients)

- 66% were seizure free at 1 year
- greater extent of resection was a predictor of seizure freedom

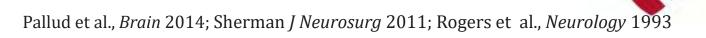
Wang et al., Neurosurgery 2018

Seizure outcomes after resection of DNET

- Single center: 50 patients
- Median age: 21 years
- Complete resection: 78%
- Additional pathology: focal cortical dysplasia (52%)
- Seizure freedom: 86 and 85% at 1 and 5 years

Decision to discontinue ASMs

- Often triggered by cognitive or mood symptoms
- In patients without surgery:
 - seizure freedom for > 2 years
 - o no history of status epilepticus
 - lack of tumor progression (e.g., LGG)
 - absence of structural injuries (encephalomalacia, radiation necrosis)
 - EEG abnormalities has NOT been found to be a significant predictor for recurrence, except for meningiomas
- In patients who completed surgery
 - no guidelines but can be considered in LGG with extensive resection


Special considerations in <u>seizure</u> <u>naïve patients</u> with CNS tumors

- ~40% of patients with brain tumors will receive ASM after craniotomy or biopsy
- Most commonly used ASM: levetiracetam
- Patients have no plan for discontinuation
- There is no indication for prophylactic ASMs per the AAN practice guidelines

Effects of adjuvant therapy on seizure control

- Controversial findings
- Large retrospective study in LGG (n=1509): no benefits of radiation or chemotherapy for seizures
- Small study in LGG (n=39): temozolomide group achieved better seizure control compared to the group that did not receive this agent
- Few studies reporting benefit of radiation for seizure control

Driving

- General driving restrictions:
 - $\circ~$ Nebraska and Colorado: no set duration but we limit to 3 months
 - o Iowa, North Dakota, Kansas, Oklahoma: 6 months
- Restrict driving if high risk of seizure recurrence
- Also restrict if cognitive impairment, weakness, or impaired vision
- Counsel, if the ASM taper is considered

Summary

- ASMs should be continued in recurrent seizures, tumor progression and short life expectancy
- Discontinuation of ASMs should be guided by tumor histopathology, duration of seizure freedom, disease progression as well as extent of resection
- ASM prophylaxis before and after surgery in seizure-naïve patients is not recommended

Acknowledgements

Sabrina Soh, UC Berkley-Neuroscience

University of Nebraska Medical Center

BREAKTHROUGHS FOR LIFE.*

