Predictive Markers for Brain Metastases in Lung Cancer

Apar Kishor Ganti, MD, MS, FACP
Professor of Medicine
VA Nebraska Western Iowa Health Care System
Division of Oncology-Hematology
University of Nebraska Medical Center

Introduction

- Lung cancer most common cause of brain metastases
- 30-50% of lung cancer patients will develop brain metastases
- Fifty per cent of lung cancer brain metastases occur at disease presentation
 - 50-60% as the only site of distant disease
 - Multiple lesions
 - One third of patients solitary

Outcomes

- Poor prognosis
- Retrospective analysis of 109 patients with brain metastases treated with stereotactic radiation
- 1-2 brain lesions (94%)
- 50% undetectable or controlled extracranial disease
- Median OS 6.1 months.
- 12-month survival rate 24%

Outcomes

Prognosis

- Graded Prognostic Assessment
- 1888 patients with NSCLC; 299 patients with SCLC

	0	0.5	1
Age (yrs)	>60	50-60	<50
KPS	<70	70–80	90–100
ECM	Present		Absent
No. of lesions	>3	2–3	1

Prognosis

Median survival (months) based on GPA

	Overall	0-1	1.5-2.5	3	3.5-4	P value
NSCLC	7.00 (6.53-7.50)	3.02 (2.6- 3.84)	6.53 (5.90- 7.10)	11.33 (9.43- 13.10)	14.78 (11.79- 18.80)	<.0001
SCLC	4.90 (4.30-6.20)	2.79 (2.04- 3.12)	5.30 (4.63- 6.83)	`	17.05 (6.10- 27.43)	<.0001

Economic Burden

- Retrospective analyses US commercial administrative claims data - lung cancer registry and mortality records from the Social Security Administration Death Master File (2005-2010)
- 584 patients
 - Brain metastases (n=247)

Economic Burden

- Average health care costs following diagnosis of brain metastases - 23% higher (\$184,872 vs. \$150,931; p = 0.010)
 - 25% higher hospitalization costs \$46,871 vs. \$37,504; p.082);
 - 23% higher ambulatory costs, (\$121,224 vs. \$98,276; p0.033);
 - 23% higher retail pharmacy costs, (\$13,282 vs. \$10,774; p = 0.118).
- Patients with brain metastases
 - More hospitalizations (2.4 vs.1.9; p = 0.005),
 - ER visits (2.7 vs. 2.2; p = 0.067),
 - Ambulatory encounters (111 vs. 92; p = 0.005) from initial diagnosis

Pathogenesis

- Hematogenous spread
- Usually located at the junction of gray matter and white matter
- Distribution follows the relative rate and blood flow in each area
 - Cerebrum 80%
 - Cerebellum 15%
 - Brainstem 5%

Clinical Features

- Headache 40-50%
 - More common with multiple lesions, posterior fossa lesions
- Focal neurologic dysfunction 20-40%
- Cognitive dysfunction 30-35%
- Seizures 10-20%
- Stroke-like symptoms 5-10%

Imaging studies

- Single institution study
- 975 patients following surgery for early-stage lung cancer
- Distant metastasis 207 patients
 - Brain metastasis (n = 60)
 - Isolated brain metastasis (n = 26; 43%)
- 5-year actuarial risk of developing brain metastasis
 - **10%**

- Risk factors for developing brain metastasis on multivariate analysis
 - Younger age (hazard ratio, 1.03/year)
 - Larger tumor size (HR, 1.26/cm)
 - Lymphovascular space invasion(HR, 1.87)
 - Hilar lymph node involvement (HR, 1.18)

- Meta-analysis of 43 studies
- Clinical factors
 - Female (OR =1.32, 95% CI: 1.17-1.49, P<0.00001)
 - Adenocarcinoma (OR =2.34, 95% CI: 1.76-3.11,P<0.00001)
 - Advanced stage (OR =1.48, 95% CI: 1.01-2.17, P=0.04);
 - EGFR mutation (OR =1.88, 95% CI: 1.26-2.80, P=0.002)
 - KRAS mutation (OR =2.99, 95% CI: 1.82-4.91, P<0.00001)

- Serum biomarkers
 - CEA (WMD 10.94; P<0.00001)
 - CA 19-9 (WMD 20.23; P<0.0001)
 - Neuron-specific enolase (WMD 9.66; P<0.00001)
 - CA 125 (WMD 22.39; P=0.0005)
 - CYFRA 21-1 (WMD 1.78; p=0.04)

- Prospective single center study stage IV NSCLC patients (n=118)
- Brain metastases (n=57; 48%)
 - Baseline (n=31; 26%)
 - Subsequent (n=26; 22%)
- Age <65 years only clinical factor associated with brain metastasis at baseline (OR 3.00; p = 0.02)

Predictive nomogram for brain metastases

- 266,522 LC cases diagnosed between 2010 and 2016 were selected from the SEER cohort.
- Risk factors for developing BM univariable and multivariable logistic and Cox regression analysis
- Nomograms were constructed based on risk factors.
- Nomogram performance was evaluated with ROC curve, or C-index and calibration curve.

Predictive nomogram for brain metastases

Genomic analyses

- 3035 NSCLC-BM tested with comprehensive genomic profiling compared to a separate cohort of 7277 primary NSCLC (pNSCLC) specimens
- Clinical factors
 - Female (54.6% vs. 51%, P=0.001)
 - Median age (62 vs. 69 yrs, P=1.1E-156)
 - Adenocarcinoma (69.5% vs. 60.4%, P=1.0E-17);
 - -LCNEC (2.6% vs. 1.1%, P=3.9E-07)
 - Squamous cell carcinoma (6.9% vs. 25.5%, P=3.0E -118)

Genomic analyses of brain metastases

Genomic analyses of brain metastases

Targetable alterations

Biomarker	NSCLC-BM	NSCLC	P-value
ALK fusion	2.7%	1.7%	0.02
MET exon 14 skipping mutations	1%	2.3%	1.1E-04
KRAS mutations	35.7%	29.6%	4.3E-08
K-ras G12C	15.2%	11.7%	5.9E-05
MET amplification	4.4%	2.3%	1.4E-06
TMB-high	55.4%	33.6%	1.3E-91
STK11 mutations	17.7%	11.6%	1.5E-14
KEAP 1 mutations	8.9%	5.3%	8.5E-10

Risk factors for brain metastases

- Retrospective study
- Patients who underwent testing for EGFR (n=1522)
- EGFR mutation (n=432; 30%)
- Brain metastases (n=236; 15.5%)
 - No EGFR mutation (n=143/1070; 13.3%)
 - EGFR mutation (n=93/432; 20.6%)
- Higher likelihood of an EGFR mutation among patients with brain metastases (OR: 1.8; P < .001).

Risk factors for brain metastases

Effect	Variable	OR (95% CI)	P value
Sex	Female v. Male	1.13 (0.87, 1.48)	NS
Ethnicity	Asian v. White/other	2.14 (1.16, 3.95)	0.02
Smoking	No v. Yes	2.75 (2.04, 3.72)	<0.001
Alcohol	No v. Yes	1.61 (1.07, 2.41)	0.02
Stage	IV v. I/II	1.76 (0.33, 9.35)	NS
	III v. I/II	0.51 (0.14, 1.90)	
Adenocarcinoma	Yes v. No	3.07 (1.87, 5.03)	<0.001
Metastatic	Brain v. Extracranial	1.85 (1.34, 2.54)	<0.001
disease	None v. Extracranial	1.64 (0.46, 5.83)	NS

- Retrospective study
- A penalized regression competing risk model
- 330 patients diagnosed with lung cancer between
 01/2014 and 06/2019 and followed through 06/2021
- Main outcome time from the diagnosis of distant metastatic disease to the development of brain metastasis, death, or censoring.

- 48 high-risk patients 24 patients (50%) developed brain metastasis
- 12 patients (50%) brain metastasis detected more than 7 months after last brain MRI (or date of metastasis, whichever was later
- Patients who missed this 7-month brain MRI surveillance opportunity window - larger brain metastasis (58% v 33%, >10 mm; OR, 2.80; CI, 0.51 to 13).
- Patients who missed the window more likely to undergo surgery (17% v 8%, odds ratio, 2.2; CI, 0.22 to 34).

Risk factors in SCLC

- Meta-analysis of 57 studies (13,188 patients)
- Factors associated with brain metastases
 - Higher T stage (≥T3) (HR = 1.72, 95% CI: 1.16–2.56; P = 0.007)
 - Male sex (HR = 1.24, 95% CI: 0.99-1.54; P = 0.06)
- Factors protective against brain metastases
 - Limited stage disease (HR = 0.34, 95% CI: 0.17–0.67; p = 0.002)
 - Older age (≥65) (HR = 0.70, 95% CI: 0.54–0.92; P = 0.01)
 - Better PS (0–1) (HR = 0.66, 95% CI: 0.42–1.02; P = 0.06)

Risk factors in SCLC

	T0-2	T0-2		T3-4				Hazard Ratio		Hazar	d Ratio		
Study or Subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI		Exp[(O-E) / V]	Fixed, 95%	CI	
203.Kim,2019	.0	193	0	41	-4.65	8.01	32.8%	0.56 [0.28, 1.12]		-	+		
34. Bernhardt, 2017	.0	0	0	0	-2.42	8.82	36.1%	0.76 [0.39, 1.47]		-			
519. Zheng, 2018	0	67	0	60	-6.21	7.58	31.1%	0.44 [0.22, 0,90]		1			
Total (95% CI)		260		101			100.0%	0.58 [0.39, 0.86]		+			
Total events	0		0										
Heterogeneity: Chi ² =	1.23, df=	2 (P=	0.54); 12=	0%					201	of,		10	100
Test for overall effect:	Z = 2.69 (P = 0.0	07)						0.01	Favours [T0-2]	Favours [T	3-4]	100

	Mal	e	Female					Hazard Ratio	Hazard Ratio
Study or Subgroup	Events	Total	Events	vents Total		Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI	Exp[(O-E) / V], Fixed, 95% CI
368.Roengvoraphoj, 2017	40	110	18	69	8	13.74	17.1%	1.79 [1.05, 3.04]	-
377. Sahmoun, 2005	0	138	0	71	1.59	15.22	18.9%	1.11 [0.67, 1.83]	_
439.Suzuki, 2018	0	142	0	151	2.91	28.13	34.9%	1.11 [0.77, 1.60]	-
514.Zeng, 2017	27	129	9	48	0.81	6.98	8.7%	1.12 [0.53, 2.36]	-
80.Chen, 2016	0	171	0	33	3.73	16.48	20.5%	1.25 [0.77, 2.03]	-
Total (95% CI)		690		370			100.0%	1.24 [0.99, 1.54]	•
Total events	67		27						
Heterogeneity: Chiz = 2.46, a	df = 4 (P =	0.85);	= 0%					<u> </u>	na nta do ann
Test for overall effect: Z = 1.9								U,	.01 0:1 1 10 100 Favours [Male] Favours [Female]

Protective factors in SCLC

	LD		ED	0.00				Hazard Ratio	Hazard Ratio	
Study or Subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI	Exp[(O-E) / V], Fixed, 95%	% CI
377. Sahmoun, 2005	27	33	71	176	-6.6	4.31	54.2%	0.22 [0.08, 0.56]		
514.Zeng, 2017	30	155	6	20	-2.06	3.64	45.8%	0.57 [0.20, 1.59]	-	
Total (95% CI)		188		196			100.0%	0.34 [0.17, 0.67]	•	
Total events	57		77							
Heterogeneity: Chi2 = 1	.84, df = 1	(P = 0)	$(18); I^2 = $	46%				b.	24 04	10 100
Test for overall effect: Z	= 3.07 (P	= 0.00	2)					0.0	0.1 0.1 1 Favours [LD] Favours [E	10 100 ED]

	<65	<65 >=						Hazard Ratio		Hazar	d Ratio	
Study or Subgroup	Events	Total	Events	Total	0-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% Cf		Exp[(O-E) / V]	, Fixed, 95% CI	
203.Kim,2019	0	0	.0	0	5.15	5.91	11.1%	2.39 [1.07, 5.35]			-	
376. Sahmoun, 2004	49	78	36	107	9.06	19.54	36.6%	1.59 [1.02, 2.48]			-	
439.Suzuki, 2018	0	0	0	0	4.68	28	52.4%	1.18 [0.82, 1.71]		13		
Total (95% CI)		78		107			100.0%	1.42 [1.09, 1.86]			•	
Total events	49		36									
Heterogeneity: Chiz = 2	1.79, df = 2	P = 0	.25); $ ^2 = 3$	28%					0.04	04	10	100
Test for overall effect. Z	= 2.58 (P	= 0.01	0)						0.01	0.1 Favours [<65]	Favours [>=65	

Protective factors in SCLC

	0-1		>=2					Hazard Ratio		Ha	azard Rati	io	
Study or Subgroup	Events	Total	Events	Total	0-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI		Exp[(O-E	/VJ, Fixe	d, 95% CI	
439.Suzuki, 2018	0	239	0	54	-4.92	15.66	80.7%	0.73 [0.45, 1.20]			-		
80.Chen, 2016	0	195	0	9	-3.25	3.75	19.3%	0.42 [0.15, 1.16]		_			
Total (95% CI)		434		63			100.0%	0.66 [0.42, 1.02]			•		
Total events	0		0								- A		
Heterogeneity: Chi ² =	0.92, df=	1 (P=	0.34); 12:	= 0%					0.04	01	-	10	100
Test for overall effect	Z = 1.85	(P = 0.0)	06)						0.01	0.1 Favours [0-1] Favo	10 ours [>=2]	100

Pathogenesis of brain metastases

MUC5AC in lung cancer

Schematic representation of MUC5AC domains. The 5525 amino acid polypeptide backbone of MUC5AC is comprised of a central region having 9 Cysteine rich domains interspersed in with heavily O-glycosylated tandem repeat (TR) domains (8 amino acid repetitive consensus sequence).

Lakshmanan I. Oncogene. 2016; 35(31): 4112–4121.

Median MUC5AC levels in lung cancer patients were higher than controls

MUC5AC in lung cancer brain metastases

Summary

- Female patients, adenocarcinoma histology, advanced stage increased risk of brain metastases
- Higher rates of several targetable genomic alterations ALK fusions, KRAS G12C mutations, and MET amplifications; decreased frequency of MET exon14 skipping mutations
- No biomarkers can consistently predict for the development of brain metastases

University of Nebraska Medical Center

