Tools and Algorithms in Bioinformatics GCBA815, Fall 2013

Week-13: NextGen Sequence Analysis

Demonstrators: Suleyman Vural, Li You, Sanjit Pandey

Babu Guda

Department of Genetics, Cell Biology and Anatomy
University of Nebraska Medical Center

11/22/2013 GCBA 815

IUPAC codes for nucleotides

Code	Definition	Meaning
Α	Adenine	A
С	Cytosine	С
G	Guanine	G
Т	Thymine	т
R	AG	pu R ine
Υ	СТ	p Y rimidine
K	GT	K eto
M	AC	a M ino
S	GC	S trong
W	AT	W eak
В	CGT	Not A
D	AGT	Not C
н	ACT	Not G
V	ACG	Not T
N	AGCT	а N у

11/22/2013 GCBA 815

NGS Applications in Biosciences

- · Genome
 - Exome sequencing
 - · Clinical sequencing, personalized medicine
 - Targeted genome sequencing (Ex: Ion torrent amplicons)
 - · Whole genome sequencing
- Transcriptome
 - · Whole transcriptome analysis
 - Small RNA analysis (siRNA, IncRNA, miRNA)
 - · Gene expression profiling for selected target genes
- Metagenome
 - Sequencing together the genomes of a mixture of species
 - Example: Human gut microbiota or environmental samples
- Epigenome
 - Chromatin Immunoprecipitation Sequencing (ChIP-Seq)
 - · Methylation and chromatin remodeling studies

11/22/2013

GCBA 815

Different file types in NGS analysis

- Fastq file generated by the sequencer, contains NGS reads
- SAM file Sequence Alignment/Map (generated by aligning the NGS reads with the reference genome)
- BAM file Binary version of the SAM file (SAMtools are used to manipulate SAM/BAM files)
- GFF file General Feature Format used to hold genome annotation (chromosome, strand, frame, exon, CDS, etc.)
- GTF file Gene Transfer Format (Also contains all the info as in GFF and in addition contains gene annotation information)
- VCF file Variant Call Format (used to store variant data such as SNPs, InDels, short structural rearrangements)

11/22/2013 GCBA 815

FASTQ format:

FASTQ is based on the popular FASTA format for sequences

FASTA format

>sequence_ID; header in one line AGTTGTAGTCCGTGATAGTCGGATCGG

FASTQ format provides additional information that includes the quality score

."
?=@7=>B==;;BB?<B?=8539<6?6>8>=BB<<B=08:9@5;:A@@?@9:BAAA<?;8;@AC@BBBBBA?<9-@B@;CAA77<:BEB<BB@07?@=<?84

ASCII code for Quality score (Phred score, ranges from 0-50)

ASCII code for Quality score (in the increasing order; ! is the worst and ~ is the best

11/22/2013 GCBA 815

Interpretation of Quality Score (Phred score)

Phred score (Q) vs Error probability (P)

$$Q = -10\log_{10} P$$

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

11/22/2013

GCBA 815

SAM File Format

```
@HD
     SN:chr20 LN:62435964
@RG
     ID:L1 PU:SC_1_10 LB:SC_1 SM:NA12891
@RG ID:L2 PU:SC_2_12 LB:SC_2 SM:NA12891
read_28833_29006_6945 99 chr20 28833 20 10M1D25M = 28993 195 \
     NM:i:1 RG:Z:L1
read 28701 28881 323b 147 chr20 28834 30 35M
                                            = 28701 -168 \
     ACCTATATCTTGGCCTTGGCCGATGCGGCCTTGCA <<<<;;:<<6;<<<<;;\
     MF:i:18 RG:Z:L2
      @HD = Header
      @SQ = Sequence Dictionary
          LN=length of sequence
      @RG= Read Group
          ID=unique read group identifier'
          PU=Platform Unit
          LB=Library
          SM=Sample
```

11/22/2013 GCBA 815

```
//CF example

/##fileformat=VCFv4.1

##filedate=20110413

##source=VCFtools

##reference=VCFtools

##reference=VCFtools

##contig==ID=1, length=249250621, mds=1b22b98cdeb4a9304cb5d48026a85128, species="Homo Sapiens">
##contig==ID=1, length=249250621, mds=1b22b98cdeb4a9304cb5d48026a85128, species="Homo Sapiens">
##contig==ID=1, length=249250621, mds=1b22b98cdeb4a9304cb5d48026a85128, species="Homo Sapiens">
##contig==ID=ID=A, Number=1, Type=String, Description="Ancestral Allele">
##INFO=ID=A, Number=1, Type=String, Description="HapMap2 membership">
##INFO=ID=A, Number=1, Type=String, Description="Genotype"

##FORNAT=<ID=AD, Number=1, Type=String, Description="Read Depth">
##FORNAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##ALT=<ID=AD, Number=1, Type=Integer, Description="Type of structural variant">
##INFO=ID=SUTYPE, Number=1, Type=Integer, Description="Type of structural variant">
##INFO=ID=BD, Number=1, Type=Integer, Description="Tope of Structural variant">
##INFO=ID=BD, Nu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2/2:29
2/2
2/2:20
0/0:20:36
                                                                            VCF representation
POS REF ALT
2 C T
                Alignment
1234
ACGT
ATGT
        (f) Large structural variant
                Alignment 100 110 120
                                                                                                                                                                                                                                                                                                    VCF representation
POS REF ALT INFO
                                                                                                                                                                                     290
                                                                                                                                                                                                                                         300
                                                                                                                                                                                                                                                                                                    100 T <DEL> SVTYPE=DEL;END=299
                 (g) Resolving ambiguity
                                                                                        Possible representation
POS REF ALT
1 TTTCCCTCT CTTACCTA
                 Alignment
1234567890
                                                                                                                                                                                                                                       Possible representation
                                                                                                                                                                                                                                                                                                                                                                    Recommended VCF representation
                                                                                                                                                                                                                                         POS REF ALT
1 T C
4 C A
                                                                                                                                                                                                                                                                                                                                                                     POS
1
4
                                                                                                                                                                                                                                                                                                                                                                                                   REF ALT
T C
                TTTCCCTCTA
CTTACCT - A
                                                                                                                                                                              Danecek P et al. Bioinformatics 2011:27:2156-2158
11/22/2013
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GCBA 815
```